Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 20 - 38
Published online 09 July 2012
  1. A. Vrij, J. Th. G. Overbeek. Rupture of Thin Liquid Films Due to Spontaneous Fluctuations in Thickness. J. Am. Chem. Soc., 90 (1968), 3074-3078. [CrossRef] [Google Scholar]
  2. G. Reiter. Dewetting of thin polymer films. Phys. Rev. Lett., 68 (1992), 75-78. [CrossRef] [PubMed] [Google Scholar]
  3. A. Sharma, R. Khanna. Pattern Formation in Unstable Thin Liquid Films. Phys. Rev. Lett., 81 (1998), 3463-3466. [CrossRef] [Google Scholar]
  4. R.M. Bradley, J.M.E. Harper. Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Tech. A, 6 (1988), 2390-2395. [Google Scholar]
  5. E. Chason, T.M. Mayer, B.K. Kellerman, D.T. Mcllroy, A.J. Howard. Roughening instability and evolution of the Ge(001) surface during ion sputtering. Phys. Rev. Lett., 72 (1994), 3040-3043. [CrossRef] [PubMed] [Google Scholar]
  6. J. Bischof, D. Scherer, S. Herminghaus, P. Leiderer. Dewetting Modes of Thin Metallic Films : Nucleation of Holes and Spinodal Dewetting. Phys. Rev. Lett., 77 (1996), 1536-1539. [CrossRef] [PubMed] [Google Scholar]
  7. S.J. Henley, J.D. Carey, S.R.P. Silva. Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B, 72 (2005), 195408-18. [CrossRef] [Google Scholar]
  8. J. Trice, D. Thomas, C. Favazza, R. R. Sureshkumar, R. Kalyanaraman. Investigation of pulsed laser induced dewetting in nanoscopic metal films. Phys. Rev. B, 75 (2007), 235439-54. [CrossRef] [Google Scholar]
  9. C. Zhang, R. Kalyanaraman. In-situ nanostructured film formation during physical vapor deposition. Appl. Phys. Lett., 83 (2003), 4827-4829. [CrossRef] [Google Scholar]
  10. C. Favazza, J. Trice, A.K. Gangopadhyay, H. Garcia, R. Sureshkumar, R. Kalyanaraman. Nanoparticle ordering by dewetting of Co on SiO2. J. Electron. Mater., 35 (2006), 1618-1620. [CrossRef] [Google Scholar]
  11. C. Favazza, R. Kalyanaraman, R. Sureshkumar. Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology, 17 (2006), 4229-4234. [CrossRef] [PubMed] [Google Scholar]
  12. J. Trice, C. Favazza, D. Thomas, H. Garcia, R. Kalyanaraman, R. R. Sureshkumar. Novel self-organization mechanism in ultrathin liquid films : theory and experiment. Phys. Rev. Lett., 101 (2008), 017802-6. [CrossRef] [PubMed] [Google Scholar]
  13. H. Krishna, R. Sachan, J. Strader, C. Favazza, M. Khenner, R. Kalyanaraman. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology, 21 (2010), 155601-8. [CrossRef] [PubMed] [Google Scholar]
  14. L. Longstreth-Spoor, J. Trice, H. Garcia, C. Zhang, R. Kalyanaraman. Nanostructure and microstructure of laser-interference-induced dynamic patterning of Co on Si. J. Phys. D : Appl. Phys., 39 (2006), 5149-5159. [CrossRef] [Google Scholar]
  15. C. Favazza, J. Trice, R. Kalyanaraman, R. Sureshkumar. Self-organized metal nanostructures through laser-interference driven thermocapillary convection. Appl. Phys. Lett., 91 (2007), 043105-7. [CrossRef] [Google Scholar]
  16. H. Krishna, N. Shirato, S. Yadavali, R. Sachan, J. Strader, R. Kalyanaraman. Self-organization of nanoscale multilayer liquid metal films : Experiment and theory. ACS Nano, 5 (2011), 470-476. [CrossRef] [PubMed] [Google Scholar]
  17. F. Brochard-Wyart, P. Martin, C. Redon. Liquid/liquid dewetting. Langmuir, 9 (1993), 3682-3690. [CrossRef] [Google Scholar]
  18. P. Lambooy, K.C. Phelan, O. Haugg, G. Krausch. Dewetting at the Liquid-Liquid Interface. Phys. Rev. Lett., 76 (1996), 1110-1113. [CrossRef] [PubMed] [Google Scholar]
  19. M. Sferrazza, M. Heppenstall-Butler, R. Cubitt, D. Bucknall, J. Webster, R. A. L. Jones. Interfacial Instability Driven by Dispersive Forces : The Early Stages of Spinodal Dewetting of a Thin Polymer Film on a Polymer Substrate. Phys. Rev. Lett., 81 (1998), 5173-5176. [Google Scholar]
  20. M.O. David, G. Reiter, T. Sitthai, J. Schultz. Deformation of a Glassy Polymer Film by Long-Range Intermolecular Forces. Langmuir, 14 (1998), 5667-5672. [CrossRef] [Google Scholar]
  21. R.A. Segalman, P.F. Green. Dynamics of Rims and the Onset of Spinodal Dewetting at Liquid/Liquid Interfaces. Macromolecules, 32 (1999), 801-807. [CrossRef] [Google Scholar]
  22. C. Wang, G. Krausch, M. Geoghegan. Dewetting at a Polymer-Polymer Interface : Film Thickness Dependence. Langmuir, 17 (2001), 6269-6274. [CrossRef] [Google Scholar]
  23. J.P. de Silva, M. Geoghegan, A.M. Higgins, G. Krausch, M.O. David, G. Reiter. Switching Layer Stability in a Polymer Bilayer by Thickness Variation. Phys. Rev. Lett., 98 (2007), 267802-5. [CrossRef] [PubMed] [Google Scholar]
  24. L. Xu, T. Shi, L. An. The competition between the liquid-liquid dewetting and the liquid-solid dewetting. J. Chem. Phys., 130 (2009), 184903-10. [CrossRef] [PubMed] [Google Scholar]
  25. A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele. Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E, 70 (2004), 025201-4. [Google Scholar]
  26. A. Pototsky, M. Bestehorn, D. Merkt. Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys., 122 (2005), 224711-23. [CrossRef] [PubMed] [Google Scholar]
  27. D. Bandyopadhyay, R. Gulabani, A. Sharma. Instability and dynamics of thin liquid bilayers. Ind. Eng. Chem. Res., 44 (2005), 1259-1272. [CrossRef] [Google Scholar]
  28. L.S. Fisher, A.A. Golovin. Nonlinear stability analysis of a two-layer thin liquid film : Dewetting and authophobic behavior. J. Colloid Interface Science, 291 (2005), 515-528. [Google Scholar]
  29. D. Merkt, A. Pototsky, M. Bestehorn, U. Thiele. Long-wave theory of bounded two-layer films with a free liquid-liquid interface : Short- and long-time evolution. Phys. Fluids, 17 (2005), 064104-23. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele. Evolution of interface patterns of three-dimensional two-layer liquid films. Europhys. Lett., 74 (2006), 665-671. [CrossRef] [Google Scholar]
  31. D. Bandyopadhyay, A. Sharma. Nonlinear instabilities and pathways of rupture in thin liquid bilayers. J. Chem. Phys., 125 (2006), 054711-13. [CrossRef] [PubMed] [Google Scholar]
  32. A.A. Nepomnyashchy, I. B. Simanovskii. Decomposition of a two-layer thin liquid film flowing under the action of Marangoni stresses. Phys. Fluids, 18 (2006), 112101-11. [CrossRef] [Google Scholar]
  33. A.A. Nepomnyashchy, I.B. Simanovskii. Marangoni instability in ultrathin two-layer films. Phys. Fluids, 19 (2007), 122103-14. [CrossRef] [Google Scholar]
  34. A.A. Nepomnyashchy, I.B. Simanovskii. The Influence of Gravity on the Dynamics of Non-Isothermic Ultra-Thin Two-Layer Films. Microgravity Sci. Technol., 21 (2009), S261-S269. [CrossRef] [Google Scholar]
  35. B.B. Yellen, O. Hovorka, G. Friedman. Arranging matter by magnetic nanoparticle assemblers. Proc. Nat. Acad. Sci., 102 (2005), 8860-8864. [Google Scholar]
  36. M.A.M. Gijs. Magnetic bead handling on-chip : new opportunities for analytical applications. Microfluidics and Nanofluidics, 1 (2004), 22-40. [Google Scholar]
  37. Y.M. Hao, M. Chen, Z.B. Hu. Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J. Hazard. Mat., 184 (2010), 392-399. [CrossRef] [Google Scholar]
  38. J. Wang, L.Y. Wang, Y. Sun, X.N. Zhu, H.Y. Xu, N. Bi, H.Q. Zhang, Y.B. Cao, X.H. Wang, D.Q. Song. Preparation of core/shell Fe3O4/Au nanocomposite and its application to surface plasmon resonance biosensor. Acta Chimica Sinica, 68 (2010), 263-268. [Google Scholar]
  39. B. Sepúlveda, A. Calle, L.M. Lechuga, G. Armelles. Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett., 31 (2006), 1085-1087. [CrossRef] [PubMed] [Google Scholar]
  40. D.M. Newman, R.J. Matelon, M.L. Wears, L.B. Savage. The In Vivo Diagnosis of Malaria : Feasibility Study Into a Magneto-Optic Fingertip Probe. IEEE J. Sel Top. Quant. Elec., 16 (2010), 573-580. [CrossRef] [Google Scholar]
  41. R. Bahuguna, M. Mina, R.J. Weber. Mach-Zehnder interferometric switch utilizing Faraday rotation. IEEE Trans. Mag., 43 (2007), 2680-2682. [CrossRef] [Google Scholar]
  42. L. Eldada. Optical communication components. Rev. Sci. Instrum., 75 (2004), 575-593. [CrossRef] [Google Scholar]
  43. K. Yang, C. Clavero, J. R. Skuza, M. Varela, R. A. Lukaszew. Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films. J. Appl. Phys., 107 (2010), 103924-5. [CrossRef] [Google Scholar]
  44. P.K. Jain, Y. Xiao, R. Walsworth, A.E. Cohen. Surface Plasmon Resonance Enhanced Magneto-Optics (SuPREMO) : Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals. Nano Lett., 9 (2009), 1644-1650. [CrossRef] [PubMed] [Google Scholar]
  45. N. Pazos-Perez, Y. Gao, M. Hilgendorff, S. Irsen, J. Pereez-Juste, M. Spasova, M. Farle, L.M. Liz-Marzan, M. Giersig. Magnetic-noble metal nanocomposites with morphology-dependent optical response. Chem. Mat., 19 (2007), 4415-4422. [CrossRef] [Google Scholar]
  46. V.S. Ajaev, D.A. Willis. Thermocapillary flow and rupture in films of molten metal on a substrate. Phys. Fluids, 15 (2003), 3144-7; Heat transfer, phase change, and thermocapillary flow in films of molten metal on a substrate. Numer. Heat Transfer, Part A, 50 (2006), 301-313. [CrossRef] [Google Scholar]
  47. A.S. Basu, Y.B. Gianchandani. Shaping high-speed Marangoni flow in liquid films by microscale perturbations in surface temperature. Appl. Phys. Lett., 90 (2007), 034102-3. [CrossRef] [Google Scholar]
  48. F.J. Higuera. Steady thermocapillary-buoyant flow in an unbounded liquid layer heated nonuniformly from above. Phys. Fluids, 12 (2000), 2186-12. [CrossRef] [Google Scholar]
  49. A. Oron, Y. Peles. Stabilization of thin liquid films by internal heat generation. Phys. Fluids, 10 (1998), 537-3. [CrossRef] [Google Scholar]
  50. A. Oron. Nonlinear dynamics of irradiated thin volatile liquid films. Phys. Fluids, 12 (2000), 29-13. [CrossRef] [Google Scholar]
  51. R.O. Grigoriev. Control of evaporatively driven instabilities of thin liquid films. Phys. Fluids, 14 (2002), 1895-15. [CrossRef] [Google Scholar]
  52. L. Kondic, J.A. Diez, Philip D. Rack, Yingfeng Guan, Jason D. Fowlkes. Nanoparticle assembly via the dewetting of patterned thin metal lines : Understanding the instability mechanisms. Phys. Rev. E, 79 (2009), 026302-7. [CrossRef] [Google Scholar]
  53. Y. Wu, J. D. Fowlkes, P. D. Rack, J. A. Diez, L. Kondic. On the Breakup of Patterned Nanoscale Copper Rings into Droplets via Pulsed-Laser-Induced Dewetting : Competing Liquid-Phase Instability and Transport Mechanisms. Langmuir, 26 (2010), 11972-11979. [CrossRef] [PubMed] [Google Scholar]
  54. Y. Wu, J. D. Fowlkes, N. A. Roberts, J. A. Diez, L. Kondic, A. G. Gonzalez, P. D. Rack. Competing liquid phase instabilities during pulsed laser induced self-assembly of copper rings into ordered nanoparticle arrays on SiO2. Langmuir, 27 (2011), 13314-13323. [CrossRef] [PubMed] [Google Scholar]
  55. H. Krishna, N. Shirato, C. Favazza, R. Kalyanaraman. Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys., 11 (2009), 8136-8143. [CrossRef] [PubMed] [Google Scholar]
  56. A. Atena, M. Khenner. Thermocapillary effects in driven dewetting and self-assembly of pulsed-laser-irradiated metallic films. Phys. Rev. B, 80 (2009), 075402-11. [CrossRef] [Google Scholar]
  57. A. Oron, S.H. Davis, S.G. Bankoff. Long scale evolution of thin liquid films. Rev. Mod. Phys., 69 (1997), 931-980. [CrossRef] [Google Scholar]
  58. M. Khenner, S. Yadavali, R. Kalyanaraman. Formation of organized nanostructures from unstable bilayers of thin metallic liquids, Phys. Fluids, 23 (2011), 122105-14. [CrossRef] [Google Scholar]
  59. C. Favazza, R. Kalyanaraman, R. Sureshkumar. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys., 102 (2007), 104308-6. [CrossRef] [Google Scholar]
  60. B.V. Derjaguin, L.F. Leonov, V.I. Roldughin. Disjoining pressure in liquid metallic films. J. Colloid Interface Sci., 108 (1985), 207-214; also in : Prog. Surf. Sci. 40 (1992), 232-239. [CrossRef] [Google Scholar]
  61. S. Yadavali, R. Kalyanaraman. Morphology transitions in ternary dewetting systems. Submitted. [Google Scholar]
  62. S. Yadavali, R. Kalyanaraman. Thermal modeling for multilayer thin films using pulsed laser induced dewetting. In preparation. [Google Scholar]
  63. J.S.C. Prentice. Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures. J. Phys. D : Appl. Phys., 33 (2000), 3139-3145. [CrossRef] [Google Scholar]
  64. S.H. Davis. On the principle of exchange of stabilities. Proc. Roy. Soc. Ser. A, 310 (1969), 341-358. [CrossRef] [MathSciNet] [Google Scholar]
  65. V.M. Starov, M.G. Velarde, C.J. Radke. Wetting and Spreading Dynamics. CRC, Boca Raton, 2007. [Google Scholar]
  66. J. Israelachvili. Intermolecular and Surface Forces. Academic, London, 1991. [Google Scholar]
  67. E. Hairer, G. Wanner. Stiff differential equations solved by Radau method. J. Comput. Appl. Math., 111 (1999), 93-111. [CrossRef] [Google Scholar]
  68. P. N. Brown, G. D. Byrne, A. C. Hindmarsh. VODE : A variable coefficient ODE solver. SIAM J. Sci. Stat. Comput., 10 (1989), 1038-1051. [Google Scholar]
  69. M.H. Ward. Interfacial thin films rupture and self-similarity. Phys. Fluids, 23 (2011), 062105-14. [CrossRef] [Google Scholar]
  70. K. Glasner, T. Witelski. Coarsening dynamics of dewetting films. Phys. Rev. E, 67 (2003), 016302-12. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.