Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 39 - 52
DOI https://doi.org/10.1051/mmnp/20127404
Published online 09 July 2012
  1. M. Elbaum, S.G. Lipson. How does a thin wetted film dry up? Phys. Rev. Lett., 72 (1994), 3562–3565. [CrossRef] [PubMed]
  2. S.G. Lipson. Pattern formation in drying water films. Physica Scripta, T67 (1996), 63–66. [CrossRef]
  3. I. Leizerson, S.G. Lipson, A.V. Lyushnin. Finger instability in wetting-dewetting phenomena. Langmuir, 20 (2004), 291–194. [CrossRef] [PubMed]
  4. S. G. Lipson. A thickness transition in evaporating water films. Phase Transitions, 77 (2004), 677–688. [CrossRef]
  5. I. Leizerson, S.G. Lipson. How does a thin volatile film move? Langmuir, 20 (2004), 8423–8425. [CrossRef] [PubMed]
  6. N. Samid-Merzel, S.G. Lipson, D.S. Tannhauser. Pattern formation in drying water films. Phys. Rev., E 57 (1998), 2906–2913.
  7. G. Taylor, P.G. Saffman. A note on the motion of bubbles in a Hele-Shaw cell and porous medium. Quart. J. Mech. Appl. Math., 12 (1959), 265–279. [CrossRef] [MathSciNet]
  8. T.A. Witten, L.M. Sander. Diffusin-limited aggragation. Phys. Rev., B 27 (1983), 5686–5697.
  9. J. Mathiesen, I. Procaccia, H. L. Swinney, M. Thrasher. The universality class of diffusion-limited aggregation and viscous-limited aggregation. Europhys. Lett., 76 (2006) No. 2, 257–263. [CrossRef]
  10. A. Arneodo, Y. Couder, G. Grasseau, V. Hakim, M. Rabaud. Uncovering the analytical Saffman-Taylor finger in unstable viscous fingering and diffusion-limited aggregation. Phys. Rev. Lett., 63 (1989), 984–987. [CrossRef] [PubMed]
  11. A. Arneodo, J. Elezgaray, M. Tabard, F. Tallet. Statistical analysis of off-lattice diffusion-limited aggregates in channeland sector geometries. Phys. Rev., E 53 (1996), 6200–6223.
  12. E. Somfai, R.C. Ball, J.P. DeVita, L.M. Sander. Diffusion-limited aggregation in channel geometry. Phys. Rev., E 68 (2003), 020401
  13. M.B. Hastings, L.S. Levitov. Laplacian growth as one-dimensional turbulence. Physica, D 116 (1998), 244–252. [CrossRef]
  14. O. Agam. Viscous fingering in volatile thin films. Phys. Rev., E 79 (2009), 021603.
  15. H. Diamant, O. Agam. Localized Rayleigh instability in evaporation fronts. Phys. Rev. Lett., 104 (2010), 047801. [CrossRef] [PubMed]
  16. V.M. Entov, P.I. Étingof. Some exact sdolutions of the thin-sheet stamping problem. Fluid Dyn., 27 (1992), 169–176. [CrossRef]
  17. M. Doi. 2nd quantization representation for classical many-particle system. J. Phys., A 9 (1976), 1465–1477.
  18. L. Peliti. Path integral approach to birth-death processes on a lattice. J. Physique, 46 (1985), 1469–1483. [CrossRef] [EDP Sciences]
  19. B. P. Lee. Renormalization-group calculation for the reaction kA → ∅. Phys., A 27 (1994), 2633–2652. [CrossRef]
  20. J. Cardy, U. C. Tauber. Theory of branching and annihilating random walks Phys. Rev Lett., 77 (1996), 4780–4783. [CrossRef] [PubMed]
  21. Here the Hamiltonian which defines the evolution does not account for the constraint that A particle cannot be born on a site ocuupied by B particle. This constraint can be taken into account by replcing the term with , where Θ(x) is the haviside function and ϵ is a positive infintesimal number.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.