Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 39 - 52
DOI https://doi.org/10.1051/mmnp/20127404
Published online 09 July 2012
  1. M. Elbaum, S.G. Lipson. How does a thin wetted film dry up? Phys. Rev. Lett., 72 (1994), 3562–3565. [CrossRef] [PubMed] [Google Scholar]
  2. S.G. Lipson. Pattern formation in drying water films. Physica Scripta, T67 (1996), 63–66. [CrossRef] [Google Scholar]
  3. I. Leizerson, S.G. Lipson, A.V. Lyushnin. Finger instability in wetting-dewetting phenomena. Langmuir, 20 (2004), 291–194. [CrossRef] [PubMed] [Google Scholar]
  4. S. G. Lipson. A thickness transition in evaporating water films. Phase Transitions, 77 (2004), 677–688. [CrossRef] [Google Scholar]
  5. I. Leizerson, S.G. Lipson. How does a thin volatile film move? Langmuir, 20 (2004), 8423–8425. [CrossRef] [PubMed] [Google Scholar]
  6. N. Samid-Merzel, S.G. Lipson, D.S. Tannhauser. Pattern formation in drying water films. Phys. Rev., E 57 (1998), 2906–2913. [Google Scholar]
  7. G. Taylor, P.G. Saffman. A note on the motion of bubbles in a Hele-Shaw cell and porous medium. Quart. J. Mech. Appl. Math., 12 (1959), 265–279. [CrossRef] [MathSciNet] [Google Scholar]
  8. T.A. Witten, L.M. Sander. Diffusin-limited aggragation. Phys. Rev., B 27 (1983), 5686–5697. [Google Scholar]
  9. J. Mathiesen, I. Procaccia, H. L. Swinney, M. Thrasher. The universality class of diffusion-limited aggregation and viscous-limited aggregation. Europhys. Lett., 76 (2006) No. 2, 257–263. [CrossRef] [Google Scholar]
  10. A. Arneodo, Y. Couder, G. Grasseau, V. Hakim, M. Rabaud. Uncovering the analytical Saffman-Taylor finger in unstable viscous fingering and diffusion-limited aggregation. Phys. Rev. Lett., 63 (1989), 984–987. [CrossRef] [PubMed] [Google Scholar]
  11. A. Arneodo, J. Elezgaray, M. Tabard, F. Tallet. Statistical analysis of off-lattice diffusion-limited aggregates in channeland sector geometries. Phys. Rev., E 53 (1996), 6200–6223. [Google Scholar]
  12. E. Somfai, R.C. Ball, J.P. DeVita, L.M. Sander. Diffusion-limited aggregation in channel geometry. Phys. Rev., E 68 (2003), 020401 [Google Scholar]
  13. M.B. Hastings, L.S. Levitov. Laplacian growth as one-dimensional turbulence. Physica, D 116 (1998), 244–252. [CrossRef] [Google Scholar]
  14. O. Agam. Viscous fingering in volatile thin films. Phys. Rev., E 79 (2009), 021603. [Google Scholar]
  15. H. Diamant, O. Agam. Localized Rayleigh instability in evaporation fronts. Phys. Rev. Lett., 104 (2010), 047801. [CrossRef] [PubMed] [Google Scholar]
  16. V.M. Entov, P.I. Étingof. Some exact sdolutions of the thin-sheet stamping problem. Fluid Dyn., 27 (1992), 169–176. [CrossRef] [Google Scholar]
  17. M. Doi. 2nd quantization representation for classical many-particle system. J. Phys., A 9 (1976), 1465–1477. [Google Scholar]
  18. L. Peliti. Path integral approach to birth-death processes on a lattice. J. Physique, 46 (1985), 1469–1483. [CrossRef] [EDP Sciences] [Google Scholar]
  19. B. P. Lee. Renormalization-group calculation for the reaction kA → ∅. Phys., A 27 (1994), 2633–2652. [CrossRef] [Google Scholar]
  20. J. Cardy, U. C. Tauber. Theory of branching and annihilating random walks Phys. Rev Lett., 77 (1996), 4780–4783. [CrossRef] [PubMed] [Google Scholar]
  21. Here the Hamiltonian which defines the evolution does not account for the constraint that A particle cannot be born on a site ocuupied by B particle. This constraint can be taken into account by replcing the term with , where Θ(x) is the haviside function and ϵ is a positive infintesimal number. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.