Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 53 - 63
DOI https://doi.org/10.1051/mmnp/20127405
Published online 09 July 2012
  1. V.S. Ajaev. Spreading of thin volatile liquid droplets on uniformly heated surfaces. J. Fluid Mech., 528 (2005), 279–296. [CrossRef] [Google Scholar]
  2. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley. Wetting and spreading. Rev. Mod. Phys., 81 (2009), 739–805. [CrossRef] [Google Scholar]
  3. J.P. Burelbach, S.G. Bankoff, S.H. Davis. Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech., 195 (1988), 463–494. [CrossRef] [Google Scholar]
  4. P.G. de Gennes. Wetting : statics and dynamics. Rev. Mod. Phys., 57 (1985), 827–863. [CrossRef] [Google Scholar]
  5. P.G. de Gennes, F. Brochard-Wyart, D. Quéré. Capillarity and wetting phenomena. Springer, 2004. [Google Scholar]
  6. S. Moosman, G.M. Homsy. Evaporating menisci of wetting fluids. J. Colloid Interface Sci., 73 (1980), 212–223. [CrossRef] [Google Scholar]
  7. S.J.S. Morris. Contact angles for evaporating liquids predicted and compared with existing experiments. J. Fluid Mech., 432 (2001), 1–30. [Google Scholar]
  8. A. Oron, S.H. Davis, S.G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69 (1997), 931–980. [CrossRef] [Google Scholar]
  9. M. Potash, P.C. Wayner. Evaporation from a two dimensional extended meniscus. Int. J. Heat Mass Transfer, 15 (1972), 1851–1863. [CrossRef] [Google Scholar]
  10. A.Ye. Rednikov, P. Colinet. Vapor-liquid steady meniscus at a superheated wall : asymptotics in an intermediate zone near the contact line. Microgravity Sci. Tech., 22 (2010), 249–255. [CrossRef] [Google Scholar]
  11. A.Ye. Rednikov, S. Rossomme, P. Colinet. Steady microstructure of a contact line for a liquid on a heated surface overlaid with its pure vapor : parametric study for a classical model. Multiphase Sci. Tech., 21 (2009), 213–248. [CrossRef] [Google Scholar]
  12. R.W. Schrage. A Theoretical Study of Interface Mass Transfer. Columbia University Press, New York, 1953. [Google Scholar]
  13. P.C. Stephan, C.A. Busse. Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int. J. Heat Mass Transfer, 35 (1992), 383–391. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.