Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 64 - 81
DOI https://doi.org/10.1051/mmnp/20127406
Published online 09 July 2012
  1. D. J. Jeffrey. Some basic principles in interaction calculations. In E. M. Torry, editor, Sedimentation of small particles in a viscous fluid, chapter 4, pages 97–124. Computational Mechanics, 1996.
  2. L. G. Leal. Advanced Transport Phenomena : Fluid Mechanics and Convective Transport Processes. Cambridge University Press, New York, 2007.
  3. B. M. Alexander, D. C. Prieve. A hydrodynamic technique for measurement of colloidal forces. Langmuir, 3 (1987) No. 5, 788–795. [CrossRef]
  4. S. G. Bike, L. Lazarro, D. C. Prieve. Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall I. Experiment. J. Colloid Interface Sci., 175 (1995) No. 2, 411–421. [CrossRef]
  5. S. G. Bike, D. C. Prieve. Electrohydrodynamic lubrication with thin double layers. J. Colloid Interface Sci., 136 (1990), No. 1, 95–112. [CrossRef]
  6. S. G. Bike, D. C. Prieve. Electrohydrodynamics of thin double layers : a model for the streaming potential profile. J. Colloid Interface Sci., 154 (1992), 87–96. [CrossRef]
  7. S. G. Bike, D. C. Prieve. Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall II. Theory. J. Colloid Interface Sci., 175 (1995), No. 2, 422–434. [CrossRef]
  8. T. G. M. van de Ven, P. Warszynski, S. S. Dukhin. Attractive electroviscous forces. Colloid Surface A, 79 (1993), No. 1, 33–41. [CrossRef]
  9. T. G. M. van de Ven, P. Warszynski, S. S. Dukhin. Electrokinetic lift of small particles. J. Colloid Interface Sci., 157 (1993), No. 2, 328–331. [CrossRef]
  10. R. G. Cox. Electroviscous forces on a charged particle suspended in a flowing liquid. J. Fluid Mech., 338 (1997), 1–34. [CrossRef]
  11. S. M. Tabatabaei, T. G. M. van de Ven, A. D. Rey. Electroviscous sphere-wall interactions. J. Colloid Interface Sci., 301 (2006), No. 1, 291–301. [CrossRef] [PubMed]
  12. E. Yariv, O. Schnitzer, I. Frankel. Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory. J. Fluid Mech., 685 (2011), 306–334. [CrossRef] [MathSciNet]
  13. O. Schnitzer, A. Khair, E. Yariv. Irreversible Electrokinetic Repulsion in Zero-Reynolds-Number Sedimentation. Phys. Rev. Lett., 107 (2011), 2783014. [CrossRef]
  14. J. B. Keller. Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders. J. Appl. Phys., 34 (1963), 991–993. [CrossRef]
  15. M. E. O’Neill, K. Stewartson. On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech., 27 (1967), 705–724. [CrossRef] [MathSciNet]
  16. M. D. A. Cooley, M. E. O’Neill. On the slow rotation of a sphere about a diameter parallel to a nearby plane wall. J. Inst. Math. Applics., 4 (1968), 163–173. [CrossRef]
  17. A. J. Goldman, R.G. Cox, H. Brenner. Slow viscous motion of a sphere parallel to a plane wall – I. Motion through a quiescent fluid. Chem. Engng Sci., 22 (1967), 637–651. [CrossRef]
  18. M. Van Dyke. Perturbation methods in fluid mechanics. Academic press, New York, 1964.
  19. A. J. Goldman, R.G. Cox, H. Brenner. Slow viscous motion of a sphere parallel to a plane wall — II. Couette flow. Chem. Engng Sci., 22 (1967), No. 4, 653–660. [CrossRef]
  20. M. E. O’Neill. A sphere in contact with a plane wall in a slow linear shear flow. Chem. Engrg Sci., 23 (1968), No. 11, 1293–1298. [CrossRef]
  21. M. D. A. Cooley, M. E. O’Neill. On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika, 16 (1969), 37–49. [CrossRef]
  22. O. Schnitzer, I. Frankel, E. Yariv. Streaming-potential phenomena in the thin-Debye-layer limit. Part 2. Moderate Péclet numbers. J. Fluid Mech., (2012), In press.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.