Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 64 - 81
DOI https://doi.org/10.1051/mmnp/20127406
Published online 09 July 2012
  1. D. J. Jeffrey. Some basic principles in interaction calculations. In E. M. Torry, editor, Sedimentation of small particles in a viscous fluid, chapter 4, pages 97–124. Computational Mechanics, 1996. [Google Scholar]
  2. L. G. Leal. Advanced Transport Phenomena : Fluid Mechanics and Convective Transport Processes. Cambridge University Press, New York, 2007. [Google Scholar]
  3. B. M. Alexander, D. C. Prieve. A hydrodynamic technique for measurement of colloidal forces. Langmuir, 3 (1987) No. 5, 788–795. [CrossRef] [Google Scholar]
  4. S. G. Bike, L. Lazarro, D. C. Prieve. Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall I. Experiment. J. Colloid Interface Sci., 175 (1995) No. 2, 411–421. [CrossRef] [Google Scholar]
  5. S. G. Bike, D. C. Prieve. Electrohydrodynamic lubrication with thin double layers. J. Colloid Interface Sci., 136 (1990), No. 1, 95–112. [CrossRef] [Google Scholar]
  6. S. G. Bike, D. C. Prieve. Electrohydrodynamics of thin double layers : a model for the streaming potential profile. J. Colloid Interface Sci., 154 (1992), 87–96. [CrossRef] [Google Scholar]
  7. S. G. Bike, D. C. Prieve. Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall II. Theory. J. Colloid Interface Sci., 175 (1995), No. 2, 422–434. [CrossRef] [Google Scholar]
  8. T. G. M. van de Ven, P. Warszynski, S. S. Dukhin. Attractive electroviscous forces. Colloid Surface A, 79 (1993), No. 1, 33–41. [CrossRef] [Google Scholar]
  9. T. G. M. van de Ven, P. Warszynski, S. S. Dukhin. Electrokinetic lift of small particles. J. Colloid Interface Sci., 157 (1993), No. 2, 328–331. [CrossRef] [Google Scholar]
  10. R. G. Cox. Electroviscous forces on a charged particle suspended in a flowing liquid. J. Fluid Mech., 338 (1997), 1–34. [CrossRef] [Google Scholar]
  11. S. M. Tabatabaei, T. G. M. van de Ven, A. D. Rey. Electroviscous sphere-wall interactions. J. Colloid Interface Sci., 301 (2006), No. 1, 291–301. [CrossRef] [PubMed] [Google Scholar]
  12. E. Yariv, O. Schnitzer, I. Frankel. Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory. J. Fluid Mech., 685 (2011), 306–334. [CrossRef] [MathSciNet] [Google Scholar]
  13. O. Schnitzer, A. Khair, E. Yariv. Irreversible Electrokinetic Repulsion in Zero-Reynolds-Number Sedimentation. Phys. Rev. Lett., 107 (2011), 2783014. [CrossRef] [Google Scholar]
  14. J. B. Keller. Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders. J. Appl. Phys., 34 (1963), 991–993. [CrossRef] [Google Scholar]
  15. M. E. O’Neill, K. Stewartson. On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech., 27 (1967), 705–724. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. D. A. Cooley, M. E. O’Neill. On the slow rotation of a sphere about a diameter parallel to a nearby plane wall. J. Inst. Math. Applics., 4 (1968), 163–173. [CrossRef] [Google Scholar]
  17. A. J. Goldman, R.G. Cox, H. Brenner. Slow viscous motion of a sphere parallel to a plane wall – I. Motion through a quiescent fluid. Chem. Engng Sci., 22 (1967), 637–651. [Google Scholar]
  18. M. Van Dyke. Perturbation methods in fluid mechanics. Academic press, New York, 1964. [Google Scholar]
  19. A. J. Goldman, R.G. Cox, H. Brenner. Slow viscous motion of a sphere parallel to a plane wall — II. Couette flow. Chem. Engng Sci., 22 (1967), No. 4, 653–660. [Google Scholar]
  20. M. E. O’Neill. A sphere in contact with a plane wall in a slow linear shear flow. Chem. Engrg Sci., 23 (1968), No. 11, 1293–1298. [CrossRef] [Google Scholar]
  21. M. D. A. Cooley, M. E. O’Neill. On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika, 16 (1969), 37–49. [CrossRef] [Google Scholar]
  22. O. Schnitzer, I. Frankel, E. Yariv. Streaming-potential phenomena in the thin-Debye-layer limit. Part 2. Moderate Péclet numbers. J. Fluid Mech., (2012), In press. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.