Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 4, 2012
Modelling phenomena on micro- and nanoscale
Page(s) 82 - 98
DOI https://doi.org/10.1051/mmnp/20127407
Published online 09 July 2012
  1. D.C. Agrawal, V.J. Menon. Surface tension and evaporation : an empirical relation for water. Physical Review A, 46 (1992), 2166-2169. [CrossRef] [PubMed] [Google Scholar]
  2. V.S. Ajaev. Spreading of thin volatile liquid droplets on uniformly heated surfaces. J. Fluid Mech. 528 (2005), 279-296. [CrossRef] [Google Scholar]
  3. D. Bensimon, A. Bensimon, F. Heslot. Process for aligning macromolecules by passage of a meniscus and applications. Patent No. : US 7754425 B2, (2010). [Google Scholar]
  4. R. Bhardwaj, X. Fang, D. Attinger. Pattern formation during the evaporation of a colloidal nanoliter drop : a numerical and experimental study. New J. Phys. 11 (2009), 075020. [CrossRef] [Google Scholar]
  5. C. Bourges-Monnier, M.E.R. Shanahan. Influence of evaporation on contact angle. Langmuir 11 (1995), 2820-2829. [CrossRef] [Google Scholar]
  6. P.G. Campbell, L.E. Weiss. Tissue engineering with the aid of inkjet printers. Expert Opin. Biol. Ther. 7 (2007), 1123-1127. [CrossRef] [PubMed] [Google Scholar]
  7. C.-T. Chen, F.-G. Tseng, C.-C. Chieng. Evaporation evolution of volatile liquid droplets in nanoliter wells. Sens. and Actuators A 130-131 (2006), 12-19. [CrossRef] [Google Scholar]
  8. W.-L. Cheng, F.-Y. Han, Q.-N. Liu, R. Zhao, H.-L. Fan. Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling. Energy (2010), doi :10.1016/j.energy.2010.10.044. [Google Scholar]
  9. R.V. Craster, O.K. Matar, K. Sefiane. Pinning, retraction, and terracing of evaporating droplets containing nanoparticles. Langmuir 25 (2009), 3601-3609. [CrossRef] [PubMed] [Google Scholar]
  10. S. David, K. Sefiane, L. Tadrist. Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops. Colloids Surf. A : Physicochem. Eng. Aspects 298 (2007), 108-114. [CrossRef] [Google Scholar]
  11. R.D. Deegan. Pattern formation in drying drops. Phys. Rev. E 61 (2000), 475-485. [CrossRef] [Google Scholar]
  12. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten. Contact line deposits in an evaporating drop. Phys. Rev. E 62 (2000), 756-765. [CrossRef] [Google Scholar]
  13. V. Dugas, J. Broutin, E. Souteyrand. Droplet evaporation study applied to DNA chip manufacturing. Langmuir 21 (2005), 9130-9136. [CrossRef] [PubMed] [Google Scholar]
  14. G.J. Dunn, S.K. Wilson, B.R. Duffy, S. David, K. Sefiane. A mathematical model for the evaporation of a thin sessile liquid droplet : comparison between experiment and theory. Colloids Surf. A : Physicochem. Eng. Aspects 323 (2008), 50-55. [CrossRef] [Google Scholar]
  15. G.J. Dunn, S.K. Wilson, B.R. Duffy, S. David, K. Sefiane. The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623 (2009), 329-351. [CrossRef] [Google Scholar]
  16. S.B. Fuller, E.J. Wilhelm, J.M. Jacobson. Ink-jet printed nanoparticle microelectromechanical systems. J. MEMS 11 (2002), 54-60. [CrossRef] [Google Scholar]
  17. K.P. Galvin. A conceptually simple derivation of the Kelvin equation. Chem. Eng. Sci. 60 (2005), 4659-4660. [CrossRef] [Google Scholar]
  18. B.-J. de Gans, P.C. Duineveld, U.S. Schubert. Inkjet printing of polymers : state of the art and future developments. Adv. Mater. 16 (2004), 203-213. [CrossRef] [Google Scholar]
  19. F. Girard, M. Antoni, K. Sefiane. On the effect of Marangoni flow on evaporation rates of heated water drops. Langmuir 24 (2008), 9207-9210. [CrossRef] [PubMed] [Google Scholar]
  20. F. Girard, M. Antoni, S. Faure, A. Steinchen. Evaporation and Marangoni driven convection in small heated water droplets. Langmuir 22 (2006), 11085-11091. [CrossRef] [PubMed] [Google Scholar]
  21. F. Girard, M. Antoni, S. Faure, A. Steinchen. Numerical study of the evaporating dynamics of a sessile water droplet. Microgr. Sci. Technol. XVIII-3/4 (2006), 42-46. [CrossRef] [Google Scholar]
  22. F. Girard, M. Antoni, S. Faure, A. Steinchen. Influence of heating temperature and relative humidity in the evaporation of pinned droplets. Colloids Surf. A 323 (2008), 36-49. [CrossRef] [Google Scholar]
  23. F. Girard, M. Antoni. Influence of substrate heating on the evaporation dynamics of pinned water droplets. Langmuir 24 (2008), 11342-11345. [CrossRef] [PubMed] [Google Scholar]
  24. G. Guena, C. Poulard, M. Voue, J.D. Coninck, A.M. Cazabat. Evaporation of sessile liquid droplets. Colloids Surf. A 291 (2006), 191-196. [CrossRef] [Google Scholar]
  25. H. Hu, R.G. Larson. Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (2002), 1334-1344. [CrossRef] [Google Scholar]
  26. H. Hu, R.G. Larson. Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir, 21 (2005), 3963-3971. [CrossRef] [PubMed] [Google Scholar]
  27. H. Hu, R.G. Larson. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 21 (2005), 3972-3980. [CrossRef] [PubMed] [Google Scholar]
  28. Y.M. Hung, Q. Seng. Effects of geometric design on thermal performance of star-groove micro-heat pipes. Int. J. Heat Mass Transfer (2010), doi :10.1016/j.ijheatmasstransfer.2010.09.070. [Google Scholar]
  29. C. Ingrosso, J.Y. Kim, E. Binetti, V. Fakhfouri, M. Striccoli, A. Agostiano, M.L. Curri, J. Brugger. Drop-on-demand inkjet printing of highly luminescent CdS and CdSe@ZnS nanocrystal based nanocomposites. Microelectr. Eng. 86 (2009), 1124-1126. [CrossRef] [Google Scholar]
  30. S. Karlsson, A. Rasmuson, I.N. Björn, S. Schantz. Characterization and mathematical modelling of single fluidised particle coating. Powder Technol. 207 (2011), 245-256. [CrossRef] [Google Scholar]
  31. H. Kim, J. Kim. Evaporation characteristics of a hydrophilic surface with micro-scale and/or nano-scale structures fabricated by sandblasting and aluminum anodization. J. Micromech. Microeng. 20 (2010), 045008 [CrossRef] [Google Scholar]
  32. J.H. Kim, Wei-Xian Shi, R.G. Larson. Methods of stretching DNA molecules using flow fields. Langmuir 23 (2007), 755-764. [CrossRef] [PubMed] [Google Scholar]
  33. S.H. Ko, J. Chung, N. Hotz, K.H. Nam, C.P. Grigoropoulos. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. J. Micromech. Microeng. 20 (2010), 125010. [CrossRef] [Google Scholar]
  34. Du Peng, Li Luhai, Zhao Wen, Leng Xian, Hu Xuwei. Study on the printing performance of coated paper inkjet ink. Adv. Mater. Res. 174 (2011), 358-361. [Google Scholar]
  35. R.G. Picknett, R. Bexon. The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61 (1977), 336-350. [CrossRef] [Google Scholar]
  36. A.Ye. Rednikov, P. Colinet. Truncated versus extended microfilms at a vapor-liquid contact line on a heated substrate. Langmuir 27(5) (2011), 1758-1769. [CrossRef] [PubMed] [Google Scholar]
  37. W.D. Ristenpart, P.G. Kim, C. Domingues, J. Wan, H.A. Stone. Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99 (2007), 234502. [CrossRef] [PubMed] [Google Scholar]
  38. N. Savva, S. Kalliadasis. Dynamics of moving contact lines : a comparison between slip and precursor film models. Europhys. Lett. 94 (2011), 64004. [CrossRef] [Google Scholar]
  39. N.C. Schirmer, S. Ströhle, M.K. Tiwari, D. Poulikakos. On the principles of printing sub-micrometer 3D structures from dielectric-liquid-based colloids. Adv. Funct. Mater. XX (2010), 1-8, DOI :10.1002/adfm.201001426. [Google Scholar]
  40. F. Schonfeld, K.H. Graf, S. Hardt, H.J. Butt. Evaporation dynamics of sessile liquid drops in still air with constant contact radius. Int. J. Heat Mass Transfer 51 (2008), 3696-3699. [CrossRef] [Google Scholar]
  41. K. Sefiane, L. Tadrist. Experimental investigation of the de-pinning phenomenon on rough surfaces of volatile drops. Int. Commun. Heat Mass Transfer 33 (2006), 482-490. [CrossRef] [Google Scholar]
  42. S. Semenov, V.M. Starov, R.G. Rubio, M.G. Velarde. Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets : computer simulations. Colloids Surf. A : Physicochem. Eng. Aspects 372 (2010), 127-134. [CrossRef] [Google Scholar]
  43. Wetting and spreading dynamics /Victor M. Starov, Manuel G. Velarde, Clayton J. Radke; Boca Raton, Fla., CRC/Taylor & Francis, London, 2007. [Google Scholar]
  44. E. Sultan, A. Boudaoud, M.B. Amar. Evaporation of a thin film : diffusion of the vapour and Marangoni instabilities. J. Fluid Mech. 543 (2005), 183-202. [CrossRef] [Google Scholar]
  45. H. Yildirim Erbil, G. McHale, S.M. Rowan, M.I. Newton. Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation. Langmuir 15 (1999), 7378-7385. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.