Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 5, 2012
Page(s) 105 - 122
Published online 17 October 2012
  1. V.I. Agol. Picornaviruses as a model for studying the nature of RNA recombination. In : The Picornaviruses. E. Ehrenfeld, E. Domingo and R.P. Roos, eds, ASM Press, Washington DC. pp. 239–252, 2010. [Google Scholar]
  2. A. Airaksinen, N. Pariente, L. Menendez-Arias, E. Domingo. Curing of foot-and-mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology, 311 (2003), 339–349. [CrossRef] [PubMed] [Google Scholar]
  3. R. Antia, R.R. Regoes, J.C. Koella, C.T. Bergstrom. The role of evolution in the emergence of infectious diseases. Nature, 426 (2003), 658–661. [CrossRef] [PubMed] [Google Scholar]
  4. A. Arias, R. Agudo, C. Ferrer-Orta, R. Perez-Luque, A. Airaksinen, E. Brocchi, E. Domingo, N. Verdaguer, C. Escarmis. Mutant viral polymerase in the transition of virus to error catastrophe identifies a critical site for RNA binding. J. Mol. Biol., 353 (2005), 1021–1032. [CrossRef] [PubMed] [Google Scholar]
  5. E. Batschelet, E. Domingo, C. Weissmann. The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene, 1 (1976), 27–32. [CrossRef] [PubMed] [Google Scholar]
  6. A. Bernad, L. Blanco, J.M. Lazaro, G. Martin, M. Salas. A conserved 3’ 5’ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell, 59 (1989), 219–228. [CrossRef] [PubMed] [Google Scholar]
  7. C.K. Biebricher, M. Eigen. The error threshold. Virus Res., 107 (2005), 117–127. [CrossRef] [PubMed] [Google Scholar]
  8. B. Borrego, I.S. Novella, E. Giralt, D. Andreu, E. Domingo. Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. J. Virol., 67 (1993), 6071–6079. [PubMed] [Google Scholar]
  9. M.J. Buzon, T. Wrin, F.M. Codoner, J. Dalmau, P. Phung, A. Bonjoch, E. Coakley, B. Clotet, J. Martinez-Picado. Combined antiretroviral therapy and immune pressure lead to in vivo HIV-1 recombination with ancestral viral genomes. Journal of acquired immune deficiency syndromes (1999), 57 (2011), 109–117. [CrossRef] [PubMed] [Google Scholar]
  10. M. Clementi. Perspectives and opportunities for novel antiviral treatments targeting virus fitness. Clin Microbiol Infect, 14 (2008), 629–631. [CrossRef] [PubMed] [Google Scholar]
  11. L.L. Coffey, Y. Beeharry, A.V. Borderia, H. Blanc, M. Vignuzzi. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci U S A, 108 (2011), 16038–16043. [CrossRef] [PubMed] [Google Scholar]
  12. S. Crowder, K. Kirkegaard. Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. Nature Genetics, 37 (2005), 701–709. [CrossRef] [PubMed] [Google Scholar]
  13. K.M. Chumakov, L.B. Powers, K.E. Noonan, I.B. Roninson, I.S. Levenbook. Correlation between amount of virus with altered nucleotide sequence and the monkey test for acceptability of oral poliovirus vaccine. Proc. Natl. Acad. Sci. USA, 88 (1991), 199–203. [CrossRef] [Google Scholar]
  14. J.C. de la Torre, J.J. Holland. RNA virus quasispecies populations can suppress vastly superior mutant progeny. J. Virol., 64 (1990), 6278–6281. [PubMed] [Google Scholar]
  15. M.R. Denison, R.L. Graham, E.F. Donaldson, L.D. Eckerle, R.S. Baric. Coronaviruses : an RNA proofreading machine regulates replication fidelity and diversity. RNA biology, 8 (2011), 270–279. [Google Scholar]
  16. E. Domingo. Mechanisms of viral emergence. Vet Res, 41 (2010), 38. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. E. Domingo, C. Biebricher, M. Eigen, J.J. Holland. Quasispecies and RNA Virus Evolution : Principles and Consequences. Landes Bioscience, Austin, 2001. [Google Scholar]
  18. E. Domingo, M. Davila, J. Ortin. Nucleotide sequence heterogeneity of the RNA from a natural population of foot-and-mouth-disease virus. Gene, 11 (1980), 333–346. [CrossRef] [PubMed] [Google Scholar]
  19. E. Domingo, R.A. Flavell, C. Weissmann. In vitro site-directed mutagenesis : generation and properties of an infectious extracistronic mutant of bacteriophage Q . Gene, 1 (1976), 3–25. [CrossRef] [PubMed] [Google Scholar]
  20. E. Domingo, J.J. Holland, P. Ahlquist. RNA Genetics, CRC Press, Boca Raton, 1988. [Google Scholar]
  21. E. Domingo, D. Sabo, T. Taniguchi, C. Weissmann. Nucleotide sequence heterogeneity of an RNA phage population. Cell, 13 (1978), 735–744. [CrossRef] [PubMed] [Google Scholar]
  22. E. Domingo, J. Sheldon, C. Perales. Viral quasispecies evolution. Microbiology and Molecular Biology Reviews, 76 (2012), 159–216. [CrossRef] [Google Scholar]
  23. E. Domingo, S. Wain-Hobson. The 30th anniversary of quasispecies. Meeting on ’Quasispecies : past, present and future’. EMBO Rep, 10 (2009), 444–448. [CrossRef] [PubMed] [Google Scholar]
  24. J.W. Drake. Comparative rates of spontaneous mutation. Nature, 221 (1969), 1132. [CrossRef] [PubMed] [Google Scholar]
  25. J.W. Drake, J.J. Holland. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA, 96 (1999), 13910–13913. [CrossRef] [Google Scholar]
  26. E.A. Duarte, I.S. Novella, S. Ledesma, D.K. Clarke, A. Moya, S.F. Elena, E. Domingo, J.J. Holland. Subclonal components of consensus fitness in an RNA virus clone. J. Virol., 68 (1994), 4295–4301. [PubMed] [Google Scholar]
  27. L.D. Eckerle, M.M. Becker, R.A. Halpin, K. Li, E. Venter, X. Lu, S. Scherbakova, R.L. Graham, R.S. Baric, T.B. Stockwell, D.J. Spiro, M.R. Denison. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog, 6 (2010), e1000896. [CrossRef] [PubMed] [Google Scholar]
  28. L.D. Eckerle, X. Lu, S.M. Sperry, L. Choi, M.R. Denison. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol, 81 (2007), 12135–12144. [CrossRef] [PubMed] [Google Scholar]
  29. M. Eigen. Natural selection : a phase transition? Biophys. Chem., 85 (2000), 101–123. [CrossRef] [PubMed] [Google Scholar]
  30. M. Eigen. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58 (1971), 465–523. [CrossRef] [PubMed] [Google Scholar]
  31. M. Eigen. Steps towards life, Oxford University Press, 1992. [Google Scholar]
  32. M. Eigen, J. McCaskill, P. Schuster. Molecular quasi-species. J. Phys. Chem., 92 (1988), 6881–6891. [CrossRef] [Google Scholar]
  33. M. Eigen, P. Schuster. The hypercycle. A principle of natural self-organization. Springer, Berlin, 1979. [Google Scholar]
  34. C. Escarmis, E. Lazaro, A. Arias, E. Domingo. Repeated bottleneck transfers can lead to non-cytocidal forms of a cytopathic virus : implications for viral extinction. J. Mol. Biol., 376 (2008), 367–379. [CrossRef] [PubMed] [Google Scholar]
  35. G. Feix, R. Pollet, C. Weissmann. Replication of viral RNA, XVI. Enzymatic synthesis of infectious viral RNA with noninfectious Q-beta minus strands as template. Proc Natl Acad Sci U S A, 59 (1968), 145–152. [CrossRef] [PubMed] [Google Scholar]
  36. C. Ferrer-Orta, R. Agudo, E. Domingo, N. Verdaguer. Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase. Current Opinion in Structural Biology, 19 (2009), 752–758. [CrossRef] [PubMed] [Google Scholar]
  37. C. Ferrer-Orta, A. Arias, R. Agudo, R. Perez-Luque, C. Escarmis, E. Domingo, N. Verdaguer. The structure of a protein primer-polymerase complex in the initiation of genome replication. EMBO J, 25 (2006), 880–888. [CrossRef] [PubMed] [Google Scholar]
  38. R.A. Flavell, D.L. Sabo, E.F. Bandle, C. Weissmann. Site-directed mutagenesis : generation of an extracistronic mutation in bacteriophage Q beta RNA. J Mol Biol, 89 (1974), 255–272. [CrossRef] [PubMed] [Google Scholar]
  39. E.C. Friedberg, G.C. Walker, W. Siede, R.D. Wood, R.A. Schultz, T. Ellenberger. DNA repair and mutagenesis. American Society for Microbiology, Washington, DC, 2006. [Google Scholar]
  40. M. Gell-Mann. Complex adaptive systems, in : G.A. Cowan, D. Pines, D. Meltzer (Eds.). Complexity. Metaphors, models and reality, Wesley Publishing Co., Reading, MA, 1994, pp. 17–45. [Google Scholar]
  41. R.F. Gesteland, T.R. Cech, J.F. Atkins. The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2006. [Google Scholar]
  42. W. Gilbert. The RNA world. Nature, 319 (1986), 618. [NASA ADS] [CrossRef] [Google Scholar]
  43. C. Gonzalez-Lopez, A. Arias, N. Pariente, G. Gomez-Mariano, E. Domingo. Preextinction viral RNA can interfere with infectivity. J. Virol., 78 (2004), 3319–3324. [CrossRef] [PubMed] [Google Scholar]
  44. A. Grande-Perez, E. Lazaro, P. Lowenstein, E. Domingo, S.C. Manrubia. Suppression of viral infectivity through lethal defection. Proc. Natl. Acad. Sci. USA, 102 (2005), 4448–4452. [CrossRef] [Google Scholar]
  45. A. Grande-Perez, S. Sierra, M.G. Castro, E. Domingo, P.R. Lowenstein. Molecular indetermination in the transition to error catastrophe : systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proc. Natl. Acad. Sci. USA, 99 (2002), 12938–12943. [CrossRef] [Google Scholar]
  46. B.L. Haagmans, A.C. Andeweg, A.D. Osterhaus. The application of genomics to emerging zoonotic viral diseases. PLoS Pathog, 5 (2009), e1000557. [CrossRef] [PubMed] [Google Scholar]
  47. G.Z. Han, M. Worobey. Homologous recombination in negative sense RNA viruses. Viruses, 3 (2011), 1358–1373. [CrossRef] [PubMed] [Google Scholar]
  48. J.J. Holland. Continuum of change in RNA virus genomes. In : A.L. Notkins, M.B.A. Oldstone (Eds.). Concepts in Viral Pathogenesis, Springer-Verlag, New York, 1984. [Google Scholar]
  49. J.J. Holland. Genetic diversity of RNA viruses. Current Topics in Microbiology and Immunology, Springer-Verlag, Berlin, 1992. [Google Scholar]
  50. J.J. Holland, E.A. Grabau, C.L. Jones, B.L. Semler. Evolution of multiple genome mutations during long-term persistent infection by vesicular stomatitis virus. Cell, 16 (1979), 495–504. [CrossRef] [PubMed] [Google Scholar]
  51. J.J. Holland, K. Spindler, F. Horodyski, E. Grabau, S. Nichol, S. VandePol. Rapid evolution of RNA genomes. Science, 215 (1982), 1577–1585. [CrossRef] [PubMed] [Google Scholar]
  52. K. Horiuchi. Genetic studies of RNA phages, in : N.D. Zinder (Ed.) RNA Phages, Cold Spring Harbor laboratory, Cold Spring Harbor, New York, 1975, pp. 29–50. [Google Scholar]
  53. J. Iranzo, S.C. Manrubia. Stochastic extinction of viral infectivity through the action of defectors. Europhys. Lett., 85 (2009), 18001. [CrossRef] [Google Scholar]
  54. J. Iranzo, C. Perales, E. Domingo, S.C. Manrubia. Tempo and mode of inhibitor-mutagen antiviral therapies : A multidisciplinary approach. Proc Natl Acad Sci U S A, 108 (2011), 16008–16013. [CrossRef] [PubMed] [Google Scholar]
  55. K.S. Kemal, C.M. Kitchen, H. Burger, B. Foley, D. Mayers, T. Klimkait, F. Hamy, K. Anastos, K. Petrovic, V.N. Minin, M.A. Suchard, B. Weiser. Recombination Between Variants from Genital Tract and Plasma : Evolution of Multidrug-Resistant HIV Type 1. AIDS research and human retroviruses, (2012), in press. [Google Scholar]
  56. G.M. Li. Mechanisms and functions of DNA mismatch repair. Cell research, 18 (2008), 85–98. [CrossRef] [PubMed] [Google Scholar]
  57. T. Loeb, N.D. Zinder. A bacteriophage containing RNA. Proc Natl Acad Sci U S A, 47 (1961), 282–289. [CrossRef] [PubMed] [Google Scholar]
  58. R. Mateo, A. Diaz, E. Baranowski, M.G. Mateu. Complete alanine scanning of intersubunit interfaces in a foot-and-mouth disease virus capsid reveals critical contributions of many side chains to particle stability and viral function. J Biol Chem, 278 (2003), 41019–41027. [CrossRef] [PubMed] [Google Scholar]
  59. L. Menendez-Arias. Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses, 1 (2009), 1137–1165. [CrossRef] [PubMed] [Google Scholar]
  60. A. Meyerhans, R. Cheynier, J. Albert, M. Seth, S. Kwok, J. Sninsky, L. Morfeldt-Manson, B. Asjo, S. Wain-Hobson. Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell, 58 (1989), 901–910. [CrossRef] [PubMed] [Google Scholar]
  61. D.R. Mills, R.L. Peterson, S. Spiegelman. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl. Acad. Sci. USA, 58 (1967), 217–224. [CrossRef] [Google Scholar]
  62. E. Minskaia, T. Hertzig, A.E. Gorbalenya, V. Campanacci, C. Cambillau, B. Canard, J. Ziebuhr. Discovery of an RNA virus 3’ − > 5’ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA, 103 (2006), 5108–5113. [CrossRef] [Google Scholar]
  63. L. Moutouh, J. Corbeil, D.D. Richman. Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc Natl Acad Sci U S A, 93 (1996), 6106–6111. [CrossRef] [PubMed] [Google Scholar]
  64. H. Naegeli. Mechanisms of DNA damage recognition in mammalian cells. Landes Bioscience, Austin, Texas, 1997. [Google Scholar]
  65. M.A. Nowak, P. Schuster. Error thresholds of replication in finite populations mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol., 137 (1989), 375–395. [CrossRef] [PubMed] [Google Scholar]
  66. S. Ojosnegros, N. Beerenwinkel, T. Antal, M.A. Nowak, C. Escarmis, E. Domingo. Competition-colonization dynamics in an RNA virus. Proc Natl Acad Sci U S A, 107 (2010), 2108–2112. [CrossRef] [PubMed] [Google Scholar]
  67. K.M. Page, M.A. Nowak. Unifying evolutionary dynamics. J. Theor. Biol., 219 (2002), 93–98. [PubMed] [Google Scholar]
  68. N. Pariente, A. Airaksinen, E. Domingo. Mutagenesis versus inhibition in the efficiency of extinction of foot-and-mouth disease virus. J. Virol., 77 (2003), 7131–7138. [CrossRef] [PubMed] [Google Scholar]
  69. N. Pariente, S. Sierra, P.R. Lowenstein, E. Domingo. Efficient virus extinction by combinations of a mutagen and antiviral inhibitors. J. Virol., 75 (2001), 9723–9730. [CrossRef] [PubMed] [Google Scholar]
  70. C. Perales, R. Agudo, S.C. Manrubia, E. Domingo. Influence of mutagenesis and viral load on the sustained low-level replication of an RNA virus. J Mol Biol, 407 (2011), 60–78. [CrossRef] [PubMed] [Google Scholar]
  71. C. Perales, R. Agudo, H. Tejero, S.C. Manrubia, E. Domingo. Potential benefits of sequential inhibitor-mutagen treatments of RNA virus infections. PLoS Pathog, 5 (2009), e1000658. [CrossRef] [PubMed] [Google Scholar]
  72. C. Perales, M. Henry, E. Domingo, S. Wain-Hobson, J.P. Vartanian. Lethal mutagenesis of foot-and-mouth disease virus involves shifts in sequence space. J Virol, (2011), 12227–12240. [CrossRef] [PubMed] [Google Scholar]
  73. C. Perales, R. Lorenzo-Redondo, C. Lopez-Galandez, M.A. Martinez, E. Domingo. Mutant spectra in virus behavior. Future Virology, 5 (2010), 679–698. [CrossRef] [Google Scholar]
  74. C. Perales, R. Mateo, M.G. Mateu, E. Domingo. Insights into RNA virus mutant spectrum and lethal mutagenesis events : replicative interference and complementation by multiple point mutants. J. Mol. Biol., 369 (2007), 985–1000. [CrossRef] [PubMed] [Google Scholar]
  75. J.K. Pfeiffer, K. Kirkegaard. Increased fidelity reduces poliovirus fitness under selective pressure in mice. PLoS Pathogens, 1 (2005), 102–110. [CrossRef] [Google Scholar]
  76. M.E. Quinones-Mateu, E. Arts. Virus fitness : concept, quantification, and application to HIV population dynamics. Current Topics in Microbiol. and Immunol., 299 (2006), 83–140. [CrossRef] [PubMed] [Google Scholar]
  77. D.B. Saakian, C.K. Biebricher, C.K. Hu. Phase diagram for the Eigen quasispecies theory with a truncated fitness landscape. Physical review, 79 (2009), 041905. [CrossRef] [Google Scholar]
  78. D.B. Saakian, E. Munoz, C.K. Hu, M.W. Deem. Quasispecies theory for multiple-peak fitness landscapes. Physical Review E, 73 (2006), 041913. [CrossRef] [Google Scholar]
  79. R. Sanjuan, M.R. Nebot, N. Chirico, L.M. Mansky, R. Belshaw. Viral mutation rates. J Virol, 84 (2010), 9733–9748. [CrossRef] [PubMed] [Google Scholar]
  80. D. Shriner, A.G. Rodrigo, D.C. Nickle, J.I. Mullins. Pervasive genomic recombination of HIV-1 in vivo. Genetics, 167 (2004), 1573–1583. [CrossRef] [PubMed] [Google Scholar]
  81. S. Sierra, M. Davila, P.R. Lowenstein, E. Domingo. Response of foot-and-mouth disease virus to increased mutagenesis. Influence of viral load and fitness in loss of infectivity. J. Virol., 74 (2000), 8316–8323. [CrossRef] [PubMed] [Google Scholar]
  82. P. Simmonds. Recombination in the Evolution of Picornaviruses. In : The Picornaviruses. E. Ehrenfeld, E. Domingo and R.P. Roos, eds, ASM Press, Washington, D.C. p.p. 229–238, 2010. [Google Scholar]
  83. P. Simmonds, S. Midgley. Recombination in the genesis and evolution of hepatitis B virus genotypes. J Virol, 79 (2005), 15467–15476. [CrossRef] [PubMed] [Google Scholar]
  84. H.A. Simon. The Sciences of the Artificial (3rd edition). The MIT Press, Cambridge, Massachusetts, 1996. [Google Scholar]
  85. F. Sobrino, M. Davila, J. Ortin, E. Domingo. Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology, 128 (1983), 310–318. [CrossRef] [PubMed] [Google Scholar]
  86. R. Solé, B. Goodwin. Signs of Life. How Complexity Pervades Biology. Basic Books, New York, 2000. [Google Scholar]
  87. R. Sousa. Structural and mechanistic relationships between nucleic acid polymerases. Trends Biochem. Sci., 21 (1996), 186–190. [PubMed] [Google Scholar]
  88. D.A. Steinhauer, E. Domingo, J.J. Holland. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene, 122 (1992), 281–288. [CrossRef] [PubMed] [Google Scholar]
  89. T.A. Steitz. DNA polymerases : structural diversity and common mechanisms. J. Biol. Chem., 274 (1999), 17395–17398. [CrossRef] [PubMed] [Google Scholar]
  90. J. Swetina, P. Schuster. Self-replication with errors. A model for polynucleotide replication. Biophys. Chem., 16 (1982), 329–345. [CrossRef] [PubMed] [Google Scholar]
  91. J. Sztuba-Solinska, A. Urbanowicz, M. Figlerowicz, J.J. Bujarski. RNA-RNA recombination in plant virus replication and evolution. Annual review of phytopathology, 49 (2011), 415–443. [CrossRef] [PubMed] [Google Scholar]
  92. M.N. Teng, M.B. Oldstone, J.C. de la Torre. Suppression of lymphocytic choriomeningitis virus-induced growth hormone deficiency syndrome by disease-negative virus variants. Virology, 223 (1996), 113–119. [CrossRef] [PubMed] [Google Scholar]
  93. R.C. Valentine, R. Ward, M. Strand. The replication cycle of RNA bacteriophages. Adv. Virus Res., 15 (1969), 1–59. [CrossRef] [PubMed] [Google Scholar]
  94. M. Vignuzzi, R. Andino. in : E. Ehrenfeld, E. Domingo, R.F. Roos (Eds.). The Picornaviruses. ASM Press, Washington DC, 2010, pp. 213–228. [Google Scholar]
  95. M. Vignuzzi, J.K. Stone, J.J. Arnold, C.E. Cameron, R. Andino. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature, 439 (2006), 344–348. [CrossRef] [PubMed] [Google Scholar]
  96. C. Weissmann, M.A. Billeter, H.M. Goodman, J. Hindley, H. Weber. Structure and function of phage RNA. Annu Rev Biochem, 42 (1973), 303–328. [CrossRef] [PubMed] [Google Scholar]
  97. C. Weissmann, T. Tanaguchi, E. Domingo, D. Sabo, R.A. Flavell. Site-directed mutagenesis as a tool in genetics, in : J. Schultz, Z. Brada (Eds.). Genetic manipulation as it affects the cancer problem, Academic Press, New York, 1977, pp. 11–36. [Google Scholar]
  98. C.O. Wilke, C. Ronnewinkel, T. Martinetz. Dynamic fitness landscapes in molecular evolution. Physics Reports, 349 (2001), 395–446. [Google Scholar]
  99. S. Wright. The roles of mutation, inbreeding, crossbreading, and selection in evolution. Proc. of the VI International Congress of Genetics, 1 (1932), 356–366. [Google Scholar]
  100. M. Yarus. Life from an RNA world. The ancestor within. Harvard University Press, Cambridge, Massachusetts and London, England, 2010. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.