Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 5, 2012
Immunology
Page(s) 7 - 23
DOI https://doi.org/10.1051/mmnp/20127503
Published online 17 October 2012
  1. A.S. Ackleh, H.T. Banks, K. Deng. A finite difference approximation for a coupled system of nonlinear size-structured populations. Nonlinear Analysis, 50 (2002), 727–748. [CrossRef] [MathSciNet] [Google Scholar]
  2. A.S. Ackleh, K. Ito. An implicit finite-difference scheme for the nonlinear size-structured population model. Numer. Funct. Anal. Optim. 18 (1997), 65–884. [CrossRef] [MathSciNet] [Google Scholar]
  3. A.S. Ackleh, K. Deng. A monotone approximation for the nonautonomous size-structured population model. Quart. Appl. Math., 57 (1999), 261–267. [MathSciNet] [Google Scholar]
  4. O. Angulo, J.C. López-Marcos, Numerical integration of fully nonlinear size-structured population models. Applied Numerical Mathematics, 50 (2004), 291–327. [CrossRef] [MathSciNet] [Google Scholar]
  5. H.T. Banks. A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering, CRC Press/Taylor and Frances Publishing, Boca Raton, FL, June, 2012, (258 pages). [Google Scholar]
  6. H.T. Banks, K.L. Bihari. Modelling and estimating uncertainty in parameter estimation. Inverse Problems, 17 (2001), 95–111. [CrossRef] [MathSciNet] [Google Scholar]
  7. H.T. Banks, V.A. Bokil, S. Hu, A.K. Dhar, R.A. Bullis, C.L. Browdy, F.C.T. Allnutt. Modeling shrimp biomass and viral infection for production of biological countermeasures CRSC-TR05-45, NCSU, December, 2005 ; Mathematical Biosciences and Engineering, 3 (2006), 635–660. [Google Scholar]
  8. H.T. Banks, L.W. Botsford, F. Kappel, C. Wang. Modeling and estimation in size structured population models. LCDS-CCS Report 87-13, Brown University ; Proceedings 2nd Course on Mathematical Ecology, (Trieste, December 8-12, 1986) World Press, Singapore, 1988, 521–541. [Google Scholar]
  9. H.T. Banks, F. Charles, M. Doumic, K.L. Sutton, W.C. Thompson. Label structured cell proliferation models. Appl. Math. Letters, 23 (2010), 1412–1415. [CrossRef] [MathSciNet] [Google Scholar]
  10. H.T. Banks, J.L. Davis. A comparison of approximation methods for the estimation of probability distributions on parameters. CRSC-TR05-38, October, 2005 ; Applied Numerical Mathematics, 57 (2007), 753–777. [Google Scholar]
  11. H.T. Banks, J.L. Davis. Quantifying uncertainty in the estimation of probability distributions. CRSC-TR07-21, December, 2007 ; Math. Biosci. Engr., 5 (2008), 647–667. [Google Scholar]
  12. H.T. Banks, J.L. Davis, S.L. Ernstberger, S. Hu, E. Artimovich, A.K. Dhar, C.L. Browdy. A comparison of probabilistic and stochastic differential equations in modeling growth uncertainty and variability. CRSC-TR08-03, NCSU, February, 2008 ; Journal of Biological Dynamics, 3 (2009), 130–148. [Google Scholar]
  13. H.T. Banks, J.L. Davis, S.L. Ernstberger, S. Hu, E. Artimovich, A.K. Dhar. Experimental design and estimation of growth rate distributions in size-structured shrimp populations. CRSC-TR08-20, NCSU, November, 2008 ; Inverse Problems, 25 (2009), 095003(28pp). [Google Scholar]
  14. H.T. Banks, J.L. Davis, S. Hu. A computational comparison of alternatives to including uncertainty in structured population models. CRSC-TR09-14, June, 2009 ; Three Decades of Progress in Systems and Control, X. Hu, U. Jonsson, B. Wahlberg, B. Ghosh (Eds.), Springer, 2010, 19–33. [Google Scholar]
  15. H.T. Banks, B.G. Fitzpatrick. Estimation of growth rate distributions in size structured population models. Quarterly of Applied Mathematics, 49 (1991), 215–235. [MathSciNet] [Google Scholar]
  16. H.T. Banks, B.G. Fitzpatrick, L.K. Potter, Y. Zhang. Estimation of probability distributions for individual parameters using aggregate population data. CRSC-TR98-6, NCSU, January, 1998 ; Stochastic Analysis, Control, Optimization and Applications, (Edited by W. McEneaney, G. Yin and Q. Zhang), Birkhauser, Boston, 1998, 353–371. [Google Scholar]
  17. H.T. Banks, S. Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. CRSC-TR11-02, NCSU, January, 2011 ; Mathematical Bioscience and Engineering, 9 (2012), 1–25. [Google Scholar]
  18. H.T. Banks, F. Kappel. Transformation semigroups and L1-approximation for size- structured population models. Semigroup Forum, 38 (1989), 141–155. [CrossRef] [MathSciNet] [Google Scholar]
  19. H.T. Banks, F. Kappel, C. Wang. Weak solutions and differentiability for size-structured population models. International Series of Numerical Mathematics, 100 (1991), 35–50. [Google Scholar]
  20. H.T. Banks, G.A. Pinter. A probabilistic multiscale approach to hysteresis in shear wave propagation in biotissue, CRSC-TR04-03, January, 2004 ; SIAM J. Multiscale Modeling and Simulation, 3 (2005), 395–412. [CrossRef] [Google Scholar]
  21. H.T. Banks, K.L. Sutton, W.C. Thompson, G. Bocharov, M. Doumic, T. Schenkel, J. Argilaguet, S. Giest, C. Peligero, A. Meyerhans. A new model for the estimation of cell proliferation dynamics using CFSE data. Center for Research in Scientific Computation Technical Report CRSC-TR11-05, NCSU, July, 2011 ; J. Immunological Methods, 373 (2011), 143–160. [Google Scholar]
  22. H.T. Banks, K.L. Sutton, W.C. Thompson, G. Bocharov, D. Roose, T. Schenkel, A. Meyerhans. Estimation of cell proliferation dynamics using CFSE data, CRSC-TR09-17, NCSU, August, 2009 ; Bull. Math. Biol. 70 (2011), 116–150; doi :10.1007/s11538-010-9524-5. [Google Scholar]
  23. H.T. Banks, W.C. Thompson. Mathematical models of dividing cell populations : Application to CFSE data. CRSC-TR12-10, N. C. State University, Raleigh, NC, April, 2012 ; Journal on Mathematical Modelling of Natural Phenomena, to appear. [Google Scholar]
  24. H.T. Banks, W.C. Thompson. A division-dependent compartmental model with cyton and intracellular label dynamics. CRSC-TR12-12, N. C. State University, Raleigh, NC, May, 2012 ; Intl. J. of Pure and Applied Math., 77 (2012), 119–147. [Google Scholar]
  25. H.T. Banks, W.C. Thompson, C. Peligero, S. Giest, J. Argilaguet, A. Meyerhans. A compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays, CRSC-TR12-03, NCSU, January, 2012 ; Math. Biosci. Engr., to appear. [Google Scholar]
  26. H.T. Banks, H.T. Tran, D.E. Woodward. Estimation of variable coefficients in the Fokker-Planck equations using moving node finite elements. SIAM J. Numer. Anal., 30 (1993), 1574–1602. [CrossRef] [MathSciNet] [Google Scholar]
  27. G.I. Bell, E.C. Anderson. Cell growth and division I. a mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophysical Journal, 7 (1967), 329–351. [CrossRef] [PubMed] [Google Scholar]
  28. A. Calsina, J. Saldana. A model of physiologically structured population dynamics with a nonlinear individual growth rate. Journal of Mathematical Biology, 33 (1995), 335–364. [CrossRef] [Google Scholar]
  29. G. Casella, R.L. Berger. Statistical Inference. Duxbury, California, 2002. [Google Scholar]
  30. F.L. Castille, T.M. Samocha, A.L. Lawrence, H. He, P. Frelier, F. Jaenike. Variability in growth and survival of early postlarval shrimp (Penaeus vannamei Boone 1931) Aquaculture, 113 (1993), 65–81. [CrossRef] [Google Scholar]
  31. J. Chu, A. Ducrot, P. Magal, S. Ruan. Hopf bifurcation in a size-structured population dynamic model with random growth. J. Differential Equations, 247 (2009), 956–1000. [CrossRef] [MathSciNet] [Google Scholar]
  32. J.M. Cushing. An Introduction to Structured Population Dynamics. CMB-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1998. [Google Scholar]
  33. T.C. Gard. Introduction to Stochastic Differential Equations. Marcel Dekker, New York, 1988. [Google Scholar]
  34. C.W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer-Verlag, Berlin, 1983. [Google Scholar]
  35. M. Gyllenberg, G.F. Webb. A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol., 28 (1990), 671–694. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. G.W. Harrison. Numerical solution of the Fokker-Planck equation using moving finite elements. Numerical Methods for Partial Differential Equations, 4 (1988), 219–232. [CrossRef] [Google Scholar]
  37. J. Hasenauer, D. Schittler, F. Allgöer. A computational model for proliferation dynamics of division- and label-structured populations. February, 2012, preprint. [Google Scholar]
  38. J. Hasenauer, S. Waldherr, M. Doszczak, P. Scheurich, N. Radde, F. Allgöer. Analysis of heterogeneous cell populations : a density-based modeling and identification framework. J. Process Control, 21 (2011), 1417–1425. [CrossRef] [Google Scholar]
  39. K. Huang. Statistical Mechanics. J. Wiley & Sons, New York, NY, 1963. [Google Scholar]
  40. M. Iannelli. Mathematical Theory of Age-Structured Population Dynamics. Applied Math. Monographs, CNR, Giardini Editori e Stampatori, Pisa, 1995. [Google Scholar]
  41. M. Kimura. Process leading to quasi-fixation of genes in natural populations due to random fluctuation of selection intensities. Genetics, 39 (1954), 280–295. [PubMed] [Google Scholar]
  42. F. Klebaner. Introduction to Stochastic Calculus with Applications. 2nd ed., Imperial College Press, London, 2006. [Google Scholar]
  43. I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer, New York, 1991. [Google Scholar]
  44. T. Luzyanina, D. Roose, G. Bocharov. Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data. J. Math. Biol., 59 (2009), 581–603. [CrossRef] [MathSciNet] [Google Scholar]
  45. T. Luzyanina, M. Mrusek, J.T. Edwards, D. Roose, S. Ehl, G. Bocharov. Computational analysis of CFSE proliferation assay. J. Math. Biol., 54 (2007), 57–89. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  46. T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A. Meyerhans, G. Bocharov. Numerical modelling of label-structured cell population growth using CFSE distribution data. Theoretical Biology and Medical Modelling, 4(2007), Published Online. [Google Scholar]
  47. A.G. McKendrick. Applications of mathematics to medical problems. Proceedings of the Edinburgh Mathematical Society, 44 (1926), 98–130. [CrossRef] [Google Scholar]
  48. J.A.J. Metz, E.O. Diekmann, The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, Vol. 68, Springer, Heidelberg, 1986. [Google Scholar]
  49. J.E. Moyal. Stochastic processes and statistical physics. Journal of the Royal Statistical Society. Series B (Methodological), 11 (1949), 150–210. [MathSciNet] [Google Scholar]
  50. Yu. V. Prohorov. Convergence of random processes and limit theorems in probability theory. Theor. Prob. Appl., 1 (1956), 157–214. [CrossRef] [Google Scholar]
  51. B. Oksendal. Stochastic Differentail Equations. 5th edition, Springer, Berlin, 2000. [Google Scholar]
  52. A. Okubo. Diffusion and Ecological Problems : Mathematical Models. Biomathematics, 10 (1980), Springer-Verlag, Berlin. [Google Scholar]
  53. G. Oster, Y. Takahashi. Models for age-specific interactions in a periodic environment. Ecological Monographs, 44 (1974), 483–501. [CrossRef] [Google Scholar]
  54. B. Perthame. Transport Equations in Biology. Birkhauser Verlag, Basel, 2007. [Google Scholar]
  55. R. Rudnicki. Models of population dynamics and genetics. From Genetics To Mathematics, (edited by M. Lachowicz and J. Miekisz), World Scientific, Singapore, 2009, 103–148. [Google Scholar]
  56. H. Risken. The Fokker-Planck Equation : Methods of Solution and Applications. Springer, New York, 1996. [Google Scholar]
  57. D. Schittler, J. Hasenauer, F. Allgöer. A generalized population model for cell proliferation : Integrating division numbers and label dynamics. Proceedings of Eighth International Workshop on Computational Systems Biology (WCSB 2011), June 2011, Zurich, Switzerland, 165–168. [Google Scholar]
  58. D. Schittler, J. Hasenauer, F. Allgöer. A model for proliferating cell populations that accounts for cell types. Proc. of 9th International Workshop on Computational Systems Biology, 2012, 84–87. [Google Scholar]
  59. J. Sinko, W. Streifer. A new model for age-size structure of a population. Ecology, 48 (1967), 910–918. [CrossRef] [Google Scholar]
  60. T.T. Soong. Random Differential Equations in Science and Engineering. Academic Press, New York and London, 1973. [Google Scholar]
  61. T.T. Soong, S.N. Chuang. Solutions of a class of random differential equations. SIAM J. Appl. Math., 24 (1973), 449–459. [CrossRef] [Google Scholar]
  62. W.C. Thompson. Partial Differential Equation Modeling of Flow Cytometry Data from CFSE-based Proliferation Assays. Ph.D. Dissertation, North Carolina State University, December, 2011. [Google Scholar]
  63. H. Von Foerster. Some remarks on changing populations. The Kinetics of Cellular Proliferation, F. Stohlman, Jr. (ed.), Grune and Stratton, New York, 1959. [Google Scholar]
  64. G.F. Webb. Theory of Nonlinear Age-dependent Population Dynamics. Marcel Dekker, New York, 1985. [Google Scholar]
  65. A.Y. Weiße, R.H. Middleton, W. Huisinga. Quantifying uncertainty, variability and likelihood for ordinary differential equation models. BMC Syst. Bio., 4 (144), 2010. [Google Scholar]
  66. G.H. Weiss Equation for the age structure of growing populations. Bull. Math. Biophy., 30 (1968), 427–435. [CrossRef] [Google Scholar]
  67. http://en.wikipedia.org/wiki/Probability_density_function. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.