Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 6, 2012
Biological oscillations
Page(s) 47 - 66
Published online 12 December 2012
  1. D. Barthélémy, Y. Caraglio. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 99 (2007), No. 3, 375–407. [Google Scholar]
  2. C.C. Berg, P. Franco, Flora neotropica monograph 94. Cecropia. Organization for Flora Neotropica. 2005. New York Botanical Garden Press, Bronx, New York, USA. [Google Scholar]
  3. P.-H. Cournède, M.Z. Kang, A. Mathieu, J.-F. Barczi, H.P. Yan, B.G. Hu, P. de Reffye, Structural factorization of plants to compute their functional and architectural growth. Simulation, 82 (2006), No. 7, 427–438. [CrossRef] [Google Scholar]
  4. P.-H. Cournède, V. Letort, A. Mathieu, M.Z. Kang, S. Lemaire, S. Trevezas, F. Houllier, P. de Reffye. Some Parameter Estimation Issues in Functional-Structural Plant Modelling. Math. Model. Nat. Phenom, 6(2) (2011), 133–159. [Google Scholar]
  5. J. Evers, J. Vos, X. Yin, P. Romero, P.E.L. van der Putten, P.C. Struik. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. Journal of Experimental Botany, 61 (2010), 2203–2216 doi:10.1093/jxb/erq025. [CrossRef] [PubMed] [Google Scholar]
  6. J. Evers, A. van der Krol, J. Vos, P.C. Struik. Understanding shoot branching by modelling form and function. Trends in Plant Science, 16 (2011), 464–467. [CrossRef] [PubMed] [Google Scholar]
  7. T. Fourcaud, X.P. Zhang, A. Stokes, H. Lambers, C. Körner. Plant growth modelling and applications: The increasing importance of plant architecture in growth models. Annals of Botany, 101 (2008), No. 8, 1053–1063. [CrossRef] [PubMed] [Google Scholar]
  8. C. Godin. Representing and encoding plant architecture: a review. Annals of Forest Science, 57 (2000), 413–438. [CrossRef] [Google Scholar]
  9. Y. Guédon, D. Barthélémy, Y. Caraglio, E. Costes. Pattern Analysis in Branching and Axillary Flowering Sequences. Journal of theoretical biology, 212 (2001), 481–520. [CrossRef] [PubMed] [Google Scholar]
  10. E. Heuvelink. Dry Matter Partitioning in Tomato: Validation of a Dynamic Simulation Model. Annals of Botany, 77 (1996), 71–80. [CrossRef] [Google Scholar]
  11. E. Heuvelink. Evaluation of a Dynamic Simulation Model for Tomato Crop Growth and Development. Annals of Botany, 83 (1999), 413–422. [CrossRef] [Google Scholar]
  12. P. Heuret, D. Barthélémy, Y. Guédon, X. Coulmier, J. Tancre. Synchronization of growth, branching and flowering processes in the south american tropical tree Cecropia obtusa (Cecropiaceae). American Journal of Botany, 89 (2002), No. 7, 1180–1187. [CrossRef] [PubMed] [Google Scholar]
  13. F. Hallé, R.A.A. Oldeman. Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Masson, Paris, 1970. [Google Scholar]
  14. S. Kirkpatrick, C. Gelatt, M. Vecchi. Optimization by simulated annealing. Science, 220 (1983), 671–680. doi: 10.1126/science.220.4598.671 [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. K. Kitajima, S. Mulkey, M. Samaniego, and J. Wright. Decline of photosynthetic capacity with leaf age and position in two tropical pioneer species. American Journal of Botany, 89 (2002), No. 12, 1925–1932. [CrossRef] [PubMed] [Google Scholar]
  16. Functional Plant Biology, 35 (2008), No. 10, 1243–1254. [CrossRef] [Google Scholar]
  17. V. Letort, P. Heuret, P.C. Zalamea, E. Nicolini, P. de Reffye. Analysis of Cecropia sciadophylla Morphogenesis Based on a Sink-Source Dynamic Model. International Symposium on Plant Growth Modeling and Applications (PMA09), IEEE Computer Society, Los Alamitos, CA, USA. (2009), 10–17. [Google Scholar]
  18. V. Letort, P. Heuret, P.C. Zalamea, E. Nicolini, P. de Reffye. Analysing the effects of local environment on the source-sink balance of Cecropia sciadophylla: a methodological approach based on model inversion. Annals of Forest Science, 69 (2012), 167–180. [CrossRef] [Google Scholar]
  19. D. Luquet, M. Dingkuhn, H.K. Kim, L. Tambour, A. Clément-Vidal. EcoMeristem, a model of morphogenesis and competition among sinks in rice. 1. Concept, validation and sensitivity analysis. Functional Plant Biology, 33 (2006), 309–323. doi: 10.1071/FP05266 [CrossRef] [Google Scholar]
  20. Y.T. Ma, A.M. Wubs, A. Mathieu, E. Heuvelink, J.Y. Zhu, B.G. Hu, P.-H. Cournède, P. deReffye. Simulation of fruit-set and trophic competition and optimization of yield advantages in six Capsicum cultivars using functional-structural plant modelling. Annals of Botany, 107 (2011), 793–803. [CrossRef] [PubMed] [Google Scholar]
  21. L.F.M. Marcelis. A Simulation Model for Dry Matter Partitioning in Cucumber. Annals of Botany, 74 (1994), 43–52. [PubMed] [Google Scholar]
  22. L.F.M. Marcelis, E. Heuvelink, L. Baan Hofman-Eijer, J. Den Bakker, L.B. Xue. Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany, 55 (2004), 22-1–2268. [Google Scholar]
  23. A. Mathieu, P.-H. Cournède, D. Barthélémy, P. de Reffye. Conditions for the Generation of Rhythms in a Discrete Dynamic System. Case of a Functional Structural Plant Growth Model. 2nd International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), IEEE Computer Society, Los Alamitos, CA, USA. (2007), 26–33. [Google Scholar]
  24. A. Mathieu, B.G. Zhang, E. Heuvelink, S.J. Liu, P.-H. Cournède, P. de Reffye. Calibration of fruit cyclic patterns in cucumber plants as a function of source-sink ratio with the Greenlab model. Proceedings of the 5th international workshop on FSPM (P. Prusinkiewicz, J. Hanan, eds.), November 2007. [Google Scholar]
  25. A. Mathieu, P.-H. Cournède, V. Letort, D. Barthélémy, P. de Reffye. A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition. Annals of Botany, 103 (2009), 1173–1186. [CrossRef] [PubMed] [Google Scholar]
  26. A. Mathieu, P.-H. Cournède, D. Barthélémy, P. de Reffye. Rhythms and alternating patterns in plants as emergent properties of a model of interaction between development and functioning. Annals of Botany, 101 (2008), No. 8, 1233–1242. [CrossRef] [PubMed] [Google Scholar]
  27. M.V. Mickelbart, G.S. Bender, G.W. Witney, C. Adams, M.L. Arpaia. Effects of clonal rootstocks on ’Hass’ avocado yield components, alternate bearing, and nutrition. Journal of Horticultural Science and Biotechnology, 82 (2007), 460–466. [Google Scholar]
  28. S.P. Monselise, E.E. Goldschmidt. Alternate bearing in fruit trees. Horticultural Reviews. 4 (1982), 128–173. [Google Scholar]
  29. P. de Reffye, M. Goursat, J.-P. Quadrat, and B.G. Hu. The Dynamic Equations of the Tree Morphogenesis Greenlab Model. Technical Report 4877, INRIA, (2003). [Google Scholar]
  30. S. Sabatier, D. Barthélémy. Growth dynamics and morphology of annual shoots according to their architectural position in young Cedrus atlantica (Endl.) Manetti ex Carrière (pinaceae). Annals of Botany, 84 (1999), 387–392. [CrossRef] [Google Scholar]
  31. A. Schapendonk, P. Brouwer. Fruit growth of cucumber in relation to assimilate supply and sink activity. Scientia Horticulturae 23 (1984), 21-33. [CrossRef] [Google Scholar]
  32. J. Schupp. Alternate Bearing in Fruit Crops. PennState Technical Report, 2011: [Google Scholar]
  33. K. Shinozaki, K. Yoda, K. Hozumi, T. Kira. A quantitative analysis of plant form - the pipe model theory i. basic analysis. Japanese Journal of Ecology., 14 (1964), 97–105. [Google Scholar]
  34. R. Sievänen, E. Nikinmaa, P. Nygren, H. Ozier-Lafontaine, J. Perttunen, H. Hakula. Components of a functional-structural tree model. Annals of Forest Sciences, 57 (2000), 399–412. [CrossRef] [EDP Sciences] [Google Scholar]
  35. U. Van Meeteren, H. Van Gelder. Role of flower buds in flower bud abscission in Hibiscus. Acta Horticulturae (1995), 284-289. [Google Scholar]
  36. J.S. Verreynne, C.J. Lovatt. The Effect of Crop Load on Budbreak Influences Return Bloom in Alternate Bearing ’Pixie’ Mandarin. Journal of the American Society for Horticultural Science, 134 (2009), 299–307. [Google Scholar]
  37. J. Warren-Wilson. Ecological data on dry matter production by plants and plant communities. The collection and processing of field data (E.F. Bradley, O.T. Denmead, eds.), Interscience Publishers, New York, 1967, pp. 77–123. [Google Scholar]
  38. P.C. Zalamea, P.R. Stevenson, S. Madrinan, P.M. Aubert, P. Heuret. Growth pattern and age determination for Cecropia sciadophylla (Urticaceae). American Journal of Botany, 95 (2008), 263–271. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.