Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 1 - 17
Published online 28 January 2013
  1. R.F. Anderson, S. Ali, L.L. Brandtmiller, S.H.H. Nielsen, M.Q. Fleisher. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science. (2006) 323, 1443-1448. [Google Scholar]
  2. G.K. Bachelor. An Introduction to Fluid Dynamics. Cambridge University Press, (1967) Cambridge. [Google Scholar]
  3. S. Balasuriya. Vanishing viscosity in the barotropic β–plane J. Math.Anal. Appl., (1997) 214, 128-150. [Google Scholar]
  4. O.M. Belotserkovskii, I.V. Mingalev, O.V. Mingalev. Formation of large-scale vortices in shear flows of the lower atmosphere of the earth in the region of tropical latitudes. Cosmic Research, (2009) 47, (6), 466-479. [CrossRef] [Google Scholar]
  5. G. Ben-Yu. Spectral method for vorticity equations on spherical surface. Math. Comput. (1995) 64, 1067-1079. [CrossRef] [Google Scholar]
  6. E.N. Blinova. A hydrodynamical theory of pressure and temperature waves and of centres of atmospheric action. C.R. (Doklady) Acad. Sci USSR, (1943) 39, 257-260. [Google Scholar]
  7. E.N. Blinova. A method of solution of the nonlinear problem of atmospheric motions on a planetary scale. Dokl. Acad. Nauk USSR, (1956) 110, 975-977. [Google Scholar]
  8. C. Cenedese, P.F. Linden. Cyclone and anticyclone formation in a rotating stratified fluid over a sloping bottom. J. Fluid Mech., (1999) 381, 199-223. [CrossRef] [Google Scholar]
  9. A. Furnier, H. Bunger, R. Hollerbach, I. Vilotte. Application of the spectral-element method to the axisymetric Navier-Stokes equations. Geophys. J. Int. 156, (2004) 682-700. [CrossRef] [Google Scholar]
  10. H. Golovkin. Vanishing viscosity in Cauchy’s problem for hydromechanics equation. Proc. Steklov Inst. Math. (1966) 92, 33-53. [Google Scholar]
  11. E. Herrmann. The motions of the atmosphere and especially its waves. Bull. Amer. Math. Soc. 2 (9), 285-296. [Google Scholar]
  12. P.A. Hsieh. Application of modflow for oil reservoir simulation during the Deepwater Horizon crisis. Ground Water. (2011) 49 (3), 319-323. [CrossRef] [PubMed] [Google Scholar]
  13. R.N. Ibragimov. Nonlinear viscous fluid patterns in a thin rotating spherical domain and applications. Phys. Fluids. (2011) 23, 123102. [CrossRef] [Google Scholar]
  14. R.N. Ibragimov, M. Dameron. Spinning phenomena and energetics of spherically pulsating patterns in stratified fluids. Physica Scripta. (2011) 84, 015402. [Google Scholar]
  15. N.H. Ibragimov, R.N. Ibragimov. Intergarion by quadratures of the nonlinear Euler equations modeling atmoaspheric flows in a thin rotating spherical shell. Phys. Letters A. (2011) 375, 3858. [Google Scholar]
  16. N.H. Ibragimov, R.N. Ibragimov. Applications of Lie Group Analysis in Geophysical Fluid Dynamics. (2011) Series on Complexity, Nonlinearity and Chaos, Vol 2, World Scientific Publishers, ISBN : 978-981-4340-46-5. [Google Scholar]
  17. N.H. Ibragimov, R.N. Ibragimov. Conservation laws and invariant solutions for a model of nonlinear atmospheric zonal flows in a thin rotatimng spherical shell. (2012) Archives of ALGA, vol. 9, pp.27-38. [Google Scholar]
  18. R.N. Ibragimov, D.E. Pelinovsky. Effects of rotation on stability of viscous stationary flows on a spherical surface. Phys. Fluids. (2010) 22, 126602. [CrossRef] [Google Scholar]
  19. R.N. Ibragimov. Mechanism of energy transfers to smaller scales within the rotational internal wave field . Springer. Mathematical Physics, Analysis and Geometry, (2010) 13 (4), 331-355. [CrossRef] [Google Scholar]
  20. R.N. Ibragimov, D.E. Pelinovsky. Incompressible viscous fluid flows in a thin spherical shell. J. Math. Fluid. Mech. (2009) 11, 60-90. [Google Scholar]
  21. R.N. Ibragimov. Shallow water theory and solutions of the free boundary problem on the atmospheric motion around the Earth. Physica Scripta. (2000) 61, 391-395. [Google Scholar]
  22. N.H. Ibragimov. A new conservation theorem. Journal of Mathematical Analysis and Applications, (2007) 333 (1), 311–328. [Google Scholar]
  23. D. Iftimie, G. Raugel. Some results on the Navier-Stokes equations in thin 3D domains. J. Diff. Eqs. (2001) 169, 281-331. [Google Scholar]
  24. H. Lamb. Hydrodynamics. Cambridge University Press, 5th edition (1924) . [Google Scholar]
  25. J.L. Lions, R. Teman, S. Wang. On the equations of the large-scale ocean. Nonlinearity. (1992) 5, 1007-1053. [CrossRef] [MathSciNet] [Google Scholar]
  26. J.L. Lions, R. Teman, S. Wang. New formulations of the primitive equations of atmosphere and applications. Nonlinearity, (1992) 5, 237-288. [CrossRef] [MathSciNet] [Google Scholar]
  27. E. Noether. Invariante Variationsprobleme. Konigliche Gessellschaft der Wissenschaften, Gottingen Math. Phys. K1., (1918) English transl. : Transport Theory and Statistical Physics 1(3) (1971) 186-207. [Google Scholar]
  28. D.T. Shindell, G.A. Schmidt. Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Res. Lett., (2004) 31, L18209. [Google Scholar]
  29. J. Shen. On pressure stabilization method and projection method for unsteady Navier-Stokes equations, in : Advances in Computer Methods for Partial Differential Equations, (1992) 658-662, IMACS, New Brunswick, NJ. [Google Scholar]
  30. C.P. Summerhayes, S.A. Thorpe. Oceanography, An Illustrative Guide. (1996) New York : John Willey & Sons. [Google Scholar]
  31. P.N. Swarztrauber. Shallow water flow on the sphere. Mon. Wea. Rev. (2004) 132, 3010-3018. [CrossRef] [Google Scholar]
  32. P.N. Swarztrauber. The approximation of vector functions and their derivatives on the sphere. SIAM J. Numer. Anal. (1981) 18, 181-210. [CrossRef] [Google Scholar]
  33. R. Temam, M. Ziane. Navier-Stokes equations in thin spherical domains. Contemp. Math. (1997) 209, 281-314. [CrossRef] [Google Scholar]
  34. J.R. Toggweiler, J.L. Russel. Ocean circulation on a warming climate. Nature. (2008) 451, 286-288. [CrossRef] [PubMed] [Google Scholar]
  35. W. Weijer, F. Vivier, S.T. Gille, H. Dijkstra. Multiple oscillatory modes of the Argentine Basin. Part II : The spectral origin of basin modes. J. Phys. Oceanogr., (2007) 37, 2869-2881. [CrossRef] [Google Scholar]
  36. D. Williamson. A standard test for numerical approximation to the shallow water equations in spherical geometry. J. Comput. Physics., (1992) 102, 211-224. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.