Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 18 - 47
DOI https://doi.org/10.1051/mmnp/20138102
Published online 28 January 2013
  1. E. J. Candès, D. L. Donoho. New tight frames of curvelets and optimal representations of objects with C2 singularities, Comm. Pure Appl. Math. 56 (2004), 219–266. [CrossRef]
  2. C. K. Chui. An introduction to wavelets. Academic Press, Inc., Boston, MA, 1992.
  3. C. K. Chui, W. He. Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8 (2000), 293–319. [CrossRef]
  4. C. K. Chui, W. He, J. Stöckler. Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmon. Anal. 13 (2002), 224–262. [CrossRef]
  5. A. Cohen, I. Daubechies. A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math. J. 68 (1992), 313–335. [CrossRef] [MathSciNet]
  6. A. Cohen, I. Daubechies, J.-C. Feauveau. Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45 (1992), 485–560. [CrossRef] [MathSciNet]
  7. I. Daubechies. Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909–996. [CrossRef] [MathSciNet]
  8. I. Daubechies. Ten lectures on wavelets. SIAM, CBMS Series, 1992.
  9. I. Daubechies, B. Han. Pairs of dual wavelet frames from any two refinable functions, Constr. Approx. 20 (2004), 325–352. [CrossRef] [MathSciNet]
  10. I. Daubechies, B. Han, A. Ron, Z. Shen. Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14 (2003), 1–46. [CrossRef] [MathSciNet]
  11. M. Ehler. On multivariate compactly supported bi-frames, J. Fourier Anal. Appl. 13 (2007), 511–532. [CrossRef]
  12. M. Ehler, B. Han. Wavelet bi-frames with few generators from multivariate refinable functions, Appl. Computat. Harmon. Anal. 25 (2008), 407–414. [CrossRef]
  13. K. Guo, D. Labate. Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39 (2007), 298–318. [CrossRef] [MathSciNet]
  14. K. Guo, D. Labate, W.-Q Lim, G. Weiss, E. Wilson. Wavelets with composite dilations and their MRA properties. Appl. Comput. Harmon. Anal. 20 (2006), 202–236. [CrossRef]
  15. B. Han. On dual wavelet tight frames. Appl. Comput. Harmon. Anal. 4 (1997), 380–413. [CrossRef]
  16. B. Han. Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets, J. Approx. Theory. 110 (2001), 18–53. [CrossRef] [MathSciNet]
  17. B. Han. Symmetry property and construction of wavelets with a general dilation matrix, Linear Algebra and its Applications. 353 (2002), 207–225 [CrossRef]
  18. B. Han. Computing the smoothness exponent of a symmetric multivariate refinable function, SIAM J. Matrix Anal. Appl. 24 (2003), 693–714. [CrossRef] [MathSciNet]
  19. B. Han. Vector cascade algorithms and refinable function vectors in Sobolev spaces, J. Approx. Theory. 124 (2003), 44–88. [CrossRef] [MathSciNet]
  20. B. Han. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix, J. Comput. Appl. Math. 155 (2003), 43–67. [CrossRef]
  21. B. Han. Classification and construction of bivariate subdivision schemes, Proceedings on Curves and Surfaces Fitting : Saint-Malo 2002, A. Cohen, J.-L. Merrien, and L. L. Schumaker eds., (2003), 187–197.
  22. B. Han. Symmetric multivariate orthogonal refinable functions, Appl. Comput. Harmon. Anal.. 17 (2004), 277–292. [CrossRef]
  23. B. Han. Matrix extension with symmetry and applications to symmetric orthonormal complex M-wavelets. J. Fourier Anal. Appl. 15 (2009), 684–705. [CrossRef]
  24. B. Han. Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26 (2009), 14–42. [CrossRef]
  25. B. Han. The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets. Math. Comp. 79 (2010), 917–951. [CrossRef] [MathSciNet]
  26. B. Han. Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules. Adv. Comput. Math. 32 (2010), 209–237. [CrossRef] [MathSciNet]
  27. B. Han. Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space, Appl. Comput. Harmon. Anal. 29 (2010), 330–353. [CrossRef]
  28. B. Han. Nonhomogeneous wavelet systems in high dimensions, Appl. Comput. Harmon. Anal. 32 (2012), 169–196. [CrossRef]
  29. B. Han, Q. Mo. Splitting a matrix of Laurent polynomials with symmetry and its application to symmetric framelet filter banks, SIAM J. Matrix Anal. Appl. 26 (2004), 97–124. [CrossRef] [MathSciNet]
  30. B. Han, Q. Mo. Symmetric MRA tight wavelet frames with three generators and high vanishing moments, Appl. Comput. Harmon. Anal. 18 (2005), 67–93. [CrossRef]
  31. B. Han, Z. Shen. Dual wavelet frames and Riesz bases in Sobolev spaces, Constr. Approx. 29 (2009), 369–406. [CrossRef] [MathSciNet]
  32. B. Han, X. S. Zhuang. Analysis and construction of multivariate interpoalting refinable function vectors, Acta Appl. Math. 107 (2009), 143–171. [CrossRef]
  33. R. Q. Jia. Approximation properties of multivariate wavelets, Math. Comp. 67 (1998), 647–665. [CrossRef] [MathSciNet]
  34. M. J. Lai, J. Stöckler. Construction of multivariate compactly supported tight wavelet frames, Appl. Comput. Harmon. Anal. 21 (2006), 324–348. [CrossRef]
  35. S. Mallat. A wavelet tour of signal processing. Third edition. Elsevier/Academic Press, Amsterdam, 2009.
  36. Y. Meyer. Wavelets and operators. Cambridge University Press, Cambridge, 1992.
  37. A. Ron, Z. Shen. Affine systems in L2(ℝd): the analysis of the analysis operator, J. Funct. Anal. 148 (1997), 408–447. [CrossRef] [MathSciNet]
  38. I. W. Selesnick, R. G. Baraniuk, N. G. Kingsbury. The dual-tree complex wavelet transform. IEEE Signal Proc. Magazine, 123 (2005), 123–151. [CrossRef]
  39. G. Strang, T. Nguyen. Wavelets and filter banks. Wellesley College, 2nd edition, 1996.
  40. M. Vetterli, J. Kovacĕvić. Wavelets and subband coding. Prentice Hall Signal Processing Series, 1995.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.