Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 18 - 47
Published online 28 January 2013
  1. E. J. Candès, D. L. Donoho. New tight frames of curvelets and optimal representations of objects with C2 singularities, Comm. Pure Appl. Math. 56 (2004), 219–266. [Google Scholar]
  2. C. K. Chui. An introduction to wavelets. Academic Press, Inc., Boston, MA, 1992. [Google Scholar]
  3. C. K. Chui, W. He. Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8 (2000), 293–319. [CrossRef] [Google Scholar]
  4. C. K. Chui, W. He, J. Stöckler. Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmon. Anal. 13 (2002), 224–262. [CrossRef] [Google Scholar]
  5. A. Cohen, I. Daubechies. A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math. J. 68 (1992), 313–335. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Cohen, I. Daubechies, J.-C. Feauveau. Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45 (1992), 485–560. [Google Scholar]
  7. I. Daubechies. Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909–996. [Google Scholar]
  8. I. Daubechies. Ten lectures on wavelets. SIAM, CBMS Series, 1992. [Google Scholar]
  9. I. Daubechies, B. Han. Pairs of dual wavelet frames from any two refinable functions, Constr. Approx. 20 (2004), 325–352. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Daubechies, B. Han, A. Ron, Z. Shen. Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14 (2003), 1–46. [Google Scholar]
  11. M. Ehler. On multivariate compactly supported bi-frames, J. Fourier Anal. Appl. 13 (2007), 511–532. [CrossRef] [Google Scholar]
  12. M. Ehler, B. Han. Wavelet bi-frames with few generators from multivariate refinable functions, Appl. Computat. Harmon. Anal. 25 (2008), 407–414. [CrossRef] [Google Scholar]
  13. K. Guo, D. Labate. Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39 (2007), 298–318. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. Guo, D. Labate, W.-Q Lim, G. Weiss, E. Wilson. Wavelets with composite dilations and their MRA properties. Appl. Comput. Harmon. Anal. 20 (2006), 202–236. [CrossRef] [Google Scholar]
  15. B. Han. On dual wavelet tight frames. Appl. Comput. Harmon. Anal. 4 (1997), 380–413. [CrossRef] [Google Scholar]
  16. B. Han. Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets, J. Approx. Theory. 110 (2001), 18–53. [CrossRef] [MathSciNet] [Google Scholar]
  17. B. Han. Symmetry property and construction of wavelets with a general dilation matrix, Linear Algebra and its Applications. 353 (2002), 207–225 [Google Scholar]
  18. B. Han. Computing the smoothness exponent of a symmetric multivariate refinable function, SIAM J. Matrix Anal. Appl. 24 (2003), 693–714. [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Han. Vector cascade algorithms and refinable function vectors in Sobolev spaces, J. Approx. Theory. 124 (2003), 44–88. [CrossRef] [MathSciNet] [Google Scholar]
  20. B. Han. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix, J. Comput. Appl. Math. 155 (2003), 43–67. [CrossRef] [Google Scholar]
  21. B. Han. Classification and construction of bivariate subdivision schemes, Proceedings on Curves and Surfaces Fitting : Saint-Malo 2002, A. Cohen, J.-L. Merrien, and L. L. Schumaker eds., (2003), 187–197. [Google Scholar]
  22. B. Han. Symmetric multivariate orthogonal refinable functions, Appl. Comput. Harmon. Anal.. 17 (2004), 277–292. [CrossRef] [Google Scholar]
  23. B. Han. Matrix extension with symmetry and applications to symmetric orthonormal complex M-wavelets. J. Fourier Anal. Appl. 15 (2009), 684–705. [CrossRef] [Google Scholar]
  24. B. Han. Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26 (2009), 14–42. [CrossRef] [Google Scholar]
  25. B. Han. The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets. Math. Comp. 79 (2010), 917–951. [CrossRef] [MathSciNet] [Google Scholar]
  26. B. Han. Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules. Adv. Comput. Math. 32 (2010), 209–237. [CrossRef] [MathSciNet] [Google Scholar]
  27. B. Han. Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space, Appl. Comput. Harmon. Anal. 29 (2010), 330–353. [CrossRef] [Google Scholar]
  28. B. Han. Nonhomogeneous wavelet systems in high dimensions, Appl. Comput. Harmon. Anal. 32 (2012), 169–196. [CrossRef] [Google Scholar]
  29. B. Han, Q. Mo. Splitting a matrix of Laurent polynomials with symmetry and its application to symmetric framelet filter banks, SIAM J. Matrix Anal. Appl. 26 (2004), 97–124. [CrossRef] [MathSciNet] [Google Scholar]
  30. B. Han, Q. Mo. Symmetric MRA tight wavelet frames with three generators and high vanishing moments, Appl. Comput. Harmon. Anal. 18 (2005), 67–93. [CrossRef] [Google Scholar]
  31. B. Han, Z. Shen. Dual wavelet frames and Riesz bases in Sobolev spaces, Constr. Approx. 29 (2009), 369–406. [CrossRef] [MathSciNet] [Google Scholar]
  32. B. Han, X. S. Zhuang. Analysis and construction of multivariate interpoalting refinable function vectors, Acta Appl. Math. 107 (2009), 143–171. [CrossRef] [Google Scholar]
  33. R. Q. Jia. Approximation properties of multivariate wavelets, Math. Comp. 67 (1998), 647–665. [CrossRef] [MathSciNet] [Google Scholar]
  34. M. J. Lai, J. Stöckler. Construction of multivariate compactly supported tight wavelet frames, Appl. Comput. Harmon. Anal. 21 (2006), 324–348. [CrossRef] [Google Scholar]
  35. S. Mallat. A wavelet tour of signal processing. Third edition. Elsevier/Academic Press, Amsterdam, 2009. [Google Scholar]
  36. Y. Meyer. Wavelets and operators. Cambridge University Press, Cambridge, 1992. [Google Scholar]
  37. A. Ron, Z. Shen. Affine systems in L2(ℝd): the analysis of the analysis operator, J. Funct. Anal. 148 (1997), 408–447. [CrossRef] [MathSciNet] [Google Scholar]
  38. I. W. Selesnick, R. G. Baraniuk, N. G. Kingsbury. The dual-tree complex wavelet transform. IEEE Signal Proc. Magazine, 123 (2005), 123–151. [Google Scholar]
  39. G. Strang, T. Nguyen. Wavelets and filter banks. Wellesley College, 2nd edition, 1996. [Google Scholar]
  40. M. Vetterli, J. Kovacĕvić. Wavelets and subband coding. Prentice Hall Signal Processing Series, 1995. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.