Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 48 - 59
DOI https://doi.org/10.1051/mmnp/20138103
Published online 28 January 2013
  1. S. Ahmed, A. Laforgia, M. E. Muldoon. On the spacing of the zeros of some classical orthogonal polynomials. J. London Math. Soc., second series 25 (1982), 246-252. [CrossRef]
  2. I. Area, D.K. Dimitrov, E. Godoy, A. Ronveaux. Zeros of Gegenbauer and Hermite polynomials and connection coefficients. Math. Comp., 73 (2004), 1937–1951. [CrossRef] [MathSciNet]
  3. I. Area, D.K. Dimitrov, E. Godoy, F.R. Rafaeli. Inequalities for zeros of Jacobi polynomials via Obrechkoff’s theorem. Math. Comp., 81 (2012), 991–1004. [CrossRef] [MathSciNet]
  4. A.F. Beardon. The theorems of Stieltjes and Favard. Lect. Notes Math., 11(1) (2011), 247–262.
  5. O. Bottema. Die Nulstellen gewisser durch Rekursionsformeln definierter Polynome. Proc. Amsterdam, 34(5) (1931), 681.
  6. C. de Boor, EB Saff. Finite sequences of orthogonal polynomials connected by a Jacobi matrix. Linear Algebra Appl., 75 (1986), 43–55. [CrossRef]
  7. A. Deaño, A. Gil, J. Segura. New inequalities from classical Sturm theorems. J. Approx. Theory, 131 (2004), 208–243. [CrossRef] [MathSciNet]
  8. A. Deaño, J. Segura. LG transformations and global inequalities for real zeros of Gauss hypergeometric functions. J. Approx. Theory, 48 (2007), 92–110.
  9. D.K. Dimitrov, F.R. Rafaeli. Monotonicity of zeros of Laguerre polynomials. J. Comput. Appl. Math.. 223 (2009), 699–702. [CrossRef]
  10. D.K. Dimitrov, G.P. Nikolov. Sharp bounds for the extreme zeros of classical orthogonal polynomials. J. Approx. Theory, 162 (2010), 1793–1804. [CrossRef] [MathSciNet]
  11. D.K. Dimitrov, R.O. Rodrigues. On the behaviour of zeros of Jacobi and Gegenbauer polynomials. J. Approx. Theory., 116 (2002), 224–239. [CrossRef] [MathSciNet]
  12. K. Driver, K. Jordaan. Bounds for extreme zeros of some classical orthogonal polynomials. J. Approx. Theory., 164 (2012), 1200–1204. [CrossRef] [MathSciNet]
  13. Á. Elbert, A. Laforgia. Upper bounds for the zeros of ultraspherical polynomials. J. Approx. Theory., 61 (1990), 88–97. [CrossRef] [MathSciNet]
  14. Á. Elbert, A. Laforgia, L.G. Rodonó. On the zeros of Jacobi polynomials. Acta Math. Hungar., 64 (4) (1994), 351–359 [CrossRef] [MathSciNet]
  15. Á. Elbert, P.D. Siafarikas. Monotonicity properties of the zeros of ultraspherical polynomials. J. Approx. Theory., 97 (1999) 31-39. [CrossRef] [MathSciNet]
  16. W. Erb, F. Tookós. Monotonicity of extremal zeros of orthogonal polynomials and applications. Appl. Math. Comput., 217 (2011), 4771–4780. [CrossRef]
  17. W.H. Foster, I. Krasikov. Inequalities for real-root polynomials and entire functions. Adv. Appl. Math., 29 (2002), 102–114. [CrossRef]
  18. P.C. Gibson. Common zeros of two polynomials in an orthogonal sequence. J. Approx. Theory, 105 (2000), 129–132. [CrossRef] [MathSciNet]
  19. J. Gishe, F. Tookós. On the Sturm comparison and convexity theorem for difference and q-difference equations. Acta Scientiarum Mathematicarum. In press.
  20. D.E. Gupta, M.E. Muldoon. Inequalities for the smallest zeros of Laguerre polynomials and their q-analogues. Journal of Inequalities in Pure and Applied Mathematics, 8 (2007), Issue 1, Article 24, 7 pp.
  21. W. Hahn. Bericht über die Nullstellen der Laguerrschen und der Hermiteschen Polynome. Jahresbericht der Deutschen Mathematiker-Vereinigung, 44 (1933), 215–236.
  22. E. Hille. Über die Nulstellen der Hermiteschen Polynome. Jahresbericht der Deutschen Mathematiker-Vereinigung, 44 (1933), 162–165.
  23. E.K. Ifantis, P.D. Siafarikas. Differential inequalities on the greatest zero of Laguerre and ultraspherical polynomials in Actas del VI Simposium on Polinomios Orthogonales Y Aplicaciones, Gijon (1999) 187-197.
  24. M.E.H. Ismail. Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, Cambridge : Cambridge University Press, 98 (2005).
  25. M.E.H. Ismail. The variation of zeros of certain orthogonal polynomials. Advances in Appl. Math., 8 (1987), 111–118. [CrossRef]
  26. M.E.H. Ismail. Monotonicity of zeros of orthogonal polynomials. Invited address in ”q-Series and Partitions”, edited by D. Stanton, IMA Volumes in Mathematics and its Applications, Vol. 18, Springer-Verlag, New York, 1989, 177–190.
  27. M.E.H. Ismail. An electrostatic model for zeros of general orthogonal polynomials. Pacific J. Math. 193 (2000), 355–369. [CrossRef] [MathSciNet]
  28. M.E.H. Ismail. More on elctrostatic models for zeros of orthogonal polynomials. J. Nonlinear Functional Analysis and Optimization, 21 (200, 43–55.
  29. M.E.H. Ismail, R Zhang, On the Hellmann-Feynman theorem and the variation of zeros of certain special functions. Adv. Appl. Math., 9 (1988), 439–446. [CrossRef]
  30. M.E.H. Ismail, M.E. Muldoon, A discrete approach to monotonicity of zeros of orthogonal polynomials. Transactions Amer. Math. Soc., 323 (1991), 65–78. [CrossRef]
  31. M.E.H. Ismail, X. Li. Bounds on the extreme zeros of orthogonal polynomials. Proc. Amer. Math. Soc., 115 (1992) 131–140. [CrossRef] [MathSciNet]
  32. K. Jordaan, F. Tookós. Convexity of the zeros of some orthogonal polynomials and related functions. J. Comp. Anal. Appl., 233 (2009), 762–767. [CrossRef]
  33. R. Koekoek, P.A. Lesky, R.F. Swarttouw. Hypergeometric orthogonal polynomials and their q-analogue. Springer Monographs in Mathematics, Springer Verlag, Berlin (2010).
  34. I. Krasikov. Bounds for zeros of the Laguerre polynomials. J. Approx. Theory., 121 (2003), 287–291. [CrossRef] [MathSciNet]
  35. I. Krasikov. On zeros of polynomials and allied functions satisfying second order differential equations. East J. Approx., 9 (2003), 41–65.
  36. A. Markov. Sur les racines de certaines équations (seconde note). Math. Ann., 27 (1886) 177–182. [CrossRef] [MathSciNet]
  37. D.S. Moak. The q-Analogue of the Laguerre Polynomials. J. Math. Anal. Appl., 81 (1981), 20–47. [CrossRef]
  38. M.E. Muldoon. Properties of zeros of orthogonal polynomials and related functions. J. Comput. Appl. Math., 48 (1993) 167–186. [CrossRef]
  39. M.E. Muldoon. Convexity properties of special functions and their zeros. Milovanovic, G. V. (ed.), Recent progress in inequalities. Dedicated to Prof. Dragoslav S. Mitrinovic. Dordrecht : Kluwer Academic Publishers. Math. Appl., Dordr. 430 1998, 309–323 Publishers, Inc., Boston, 1991.
  40. E.R. Neumann. Zur Theorie der Laguerreschen Polynome. Jahresber. d. S.M.V., 30 (1921) 15.
  41. G.P. Nikolov, R. Uluchev. Inequalities for real-root polynomials. Proof of a conjecture of Foster and Krasikov. in : D.K. Dimitrov, G.P. Nikolov, R. Uluchev (eds.), Approximation Theory : A volume dedicated to B. Bojanov. Marin Drinov Academic Publishing House, Sofia, 2004, pp. 201–216.
  42. P.D. Siafarikas. Inequalities for the zeros of the associated ultraspherical polynomials. Math. Inequal. Applic.(2), 2 (1999) 233–241.
  43. C.L. Siegel. Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss., 1, (1929), 1–70.
  44. T.J. Stieltjes. Sur les racines de l équation Xn = 0. Acta Math., 9 (1886) 385–400. [CrossRef]
  45. C. Sturm. Memoire sur les équations différentielles du second ordre. J. Math. Pures Appl., 1 (1836) 106–186.
  46. G. Szegő. Orthogonal Polynomials. American Mathematical Society Colloquium Publications, Volume XXIII, Providence, RI, fourth edition, 1975.
  47. E. van Doorn. Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices. J. Approx. Theory., 51 (1987) 254–266. [CrossRef] [MathSciNet]
  48. L. Vinet, A. Zhedanov. A characterization of classical and semiclassical orthogonal polynomials from their dual polynomials. J. Comput. Appl. Math. 172 (2004), 41–48. [CrossRef]
  49. H.S. Wall, M. Wetzel. Quadratic forms and convergence regions for continued fractions. Duke Math. J., 11 (1944), 983–1000.
  50. G.N. Watson. A Treatise on the Theory of Bessel Functions 2nd ed., (Cambridge University Press, Cambridge 1966).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.