Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 60 - 74
DOI https://doi.org/10.1051/mmnp/20138104
Published online 28 January 2013
  1. J. Bobin, J.-L. Starck, M.J. Fadili, Y. Moudden, D.L. Donoho. Morphological component analysis : an adaptive thresholding strategy. IEEE Trans. Image Process. 16 (11) (2007), 2675–2681. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. E. J. Candès, L. Demanet, D. Donoho, L. Ying. Fast discrete curvelet transforms. Multiscale Model. Simul. 5 (2006), 861–899. [CrossRef] [Google Scholar]
  3. E. J. Candès, D. L. Donoho. Ridgelets : the key to high dimensional intermittency? Philosophical Transactions of the Royal Society of London A, 357 (1999), 2495–2509. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  4. E. J. Candès, D. L. Donoho. New tight frames of curvelets and optimal representations of objects with C2 singularities. Comm. Pure Appl. Math., 57 (2004), 219–266. [CrossRef] [Google Scholar]
  5. S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Rev. 43 (1) (2001), 129–159. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Daubechies, M. Defrise, C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57 (2004), 1413–1457. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. L. Donoho. Denoising by soft thresholding. IEEE Trans. Inf. Theory, 41 (3) (1995), 613–627. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. L. Donoho. Sparse components of images and optimal atomic decomposition. Constr. Approx. 17 (2001), 353–382. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. L. Donoho. Wedgelets : nearly-minimax estimation of edges. Annals of Statistics, 27 (1999), 859–897. [CrossRef] [Google Scholar]
  10. D. L. Donoho, I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81 (3) (1994), 425–455. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. L. Donoho, I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 (1995), 1200–1224. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard. Wavelet shrinkage. Asymptopia. J. Roy. Statist. Soc. B, 57 (2) (1995), 301–337. [Google Scholar]
  13. G. R. Easley, D. Labate, F. Colonna. Shearlet-based total variation diffusion for denoising. IEEE Trans. Image Proc. 18 (2) (2009), 260–268. [CrossRef] [Google Scholar]
  14. G. R. Easley, D. Labate, W. Lim. Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal., 25 (1) (2008), 25–46. [CrossRef] [Google Scholar]
  15. M. Elad. Sparse and Redundant Representations : From Theory to Applications in Signal and Image Processing. Springer, New York, NY, 2010. [Google Scholar]
  16. M. Elad, P. Milanfar, R. Rubinstein. Analysis Versus Synthesis in Signal Priors. Inverse Problems, 23 (3) (2007), 947–968. [NASA ADS] [CrossRef] [Google Scholar]
  17. K. Guo, G. Kutyniok, D. Labate. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators, in : Wavelets and Splines, G. Chen and M. Lai (eds.), Nashboro Press, Nashville, TN (2006), 189–201. [Google Scholar]
  18. K. Guo, D. Labate. Optimally Sparse Multidimensional Representation using Shearlets. SIAM J. Math. Anal.. 9 (2007), 298–318. [CrossRef] [MathSciNet] [Google Scholar]
  19. K. Guo, D. Labate. Optimally sparse 3D approximations using shearlet representations. Electron. Res. Announc. Math. Sci. 17 (2010), 126–138. [Google Scholar]
  20. K. Guo, D. Labate. Optimally sparse representations of 3D Data with C2 surface singularities using Parseval frames of shearlets. SIAM J Math. Anal. 44 (2012), 851–886. [CrossRef] [MathSciNet] [Google Scholar]
  21. K. Guo, D. Labate. The Construction of Smooth Parseval Frames of Shearlets. Math. Model. Nat. Phenom. 8 (1) (2013), 3255. [Google Scholar]
  22. X. Huo. Sparse Image Representation Via Combined Transforms, Ph.D. Thesis, Stanford University, 1999. [Google Scholar]
  23. G. Kutyniok. Clustered sparsity and separation of cartoon and texture, preprint (2012). [Google Scholar]
  24. D. Labate, W.-Q Lim, G. Kutyniok, G. Weiss. Sparse multidimensional representation using shearlets, in Wavelets XI, edited by M. Papadakis, A. F. Laine, and M. A. Unser, SPIE Proc. 5914 (2005), SPIE, Bellingham, WA, 2005, 254–262. [Google Scholar]
  25. Y. Lu, M. N. Do. Multidimensional directional filter banks and surfacelets, IEEE Trans. Image Process., 16 (4) (2007), 918–931. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. F. Malgouyres. Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. Signal Process. 11 (12) (2002), 1450–1456. [Google Scholar]
  27. S. Mallat. A Wavelet Tour of Signal Processing.Third Edition : The Sparse Way, Academic Press, San Diego, CA, 2008. [Google Scholar]
  28. F. G. Meyer, A. Z. Averbuch, R. Coifman. Multi-layered image representation : Application to image compression, IEEE Trans. Image Process. 11(6) (1998), 1072–1080. [CrossRef] [Google Scholar]
  29. P. S. Negi, D. Labate. 3D discrete shearlet transform and video processing, IEEE Trans. Image Process. 21(6) (2012), 944–2954. [Google Scholar]
  30. V. M. Patel, G. R. Easley, R. Chellappa, Component-based restoration of speckled images, Proceedings 18th IEEE International Conference on Image Processing (ICIP), 2011. [Google Scholar]
  31. J. L. Starck, M. Elad, D.L. Donoho. Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans. Image Process. 14(10) (2005), 1570–1582. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. J. L. Starck, F. Murtagh, A. Bijaoui. Multiresolution support applied to image filtering and restoration, Graphic. Models Image Process. 57 (1995), 420–431. [CrossRef] [Google Scholar]
  33. J. L. Starck, F. Murtagh, J. M. Fadili. Sparse Image and Signal Processing, Cambridge University Press, New York, NY, 2010. [Google Scholar]
  34. A. Woiselle, J. L. Starck, J. M. Fadili. 3-D Data denoising and inpainting with the Low-Redundancy Fast Curvelet Transform, J. Math. Imaging Vis. 39(2) (2011), 121–139. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.