Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 75 - 81
Published online 28 January 2013
  1. A. Avila, On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators, Commun. Math. Phys. 288 (2009), 907–918 [CrossRef]
  2. J. Avron, B. Simon, Almost periodic Schrödinger operators. I. Limit periodic potentials, Commun. Math. Phys. 82 (1981), 101–120 [CrossRef]
  3. D. Damanik, Z. Gan, Spectral properties of limit-periodic Schrödinger operators, Commun. Pure Appl. Anal. 10 (2011), 859–871 [CrossRef] [MathSciNet]
  4. D. Damanik, Z. Gan, Limit-periodic Schrödinger operators in the regime of positive Lyapunov exponents, J. Funct. Anal. 258 (2010), 4010–4025 [CrossRef] [MathSciNet]
  5. D. Damanik, Z. Gan, Limit-periodic Schröinger operators with uniformly localized eigenfunctions, J. d’Analyse Math, 115 (2011), 33–49 [CrossRef]
  6. D. Damanik, Z. Gan, Limit-Periodic Schrödinger Operators on Zd : Uniform Localization, preprint
  7. R. del Rio, S. Jitomirskaya, Y. Last, B. Simon, What is localization?, Phys. Rev. Lett. 75 (1995), 117–119 [CrossRef] [PubMed]
  8. R. del Rio, S. Jitomirskaya, Y. Last, B. Simon, Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization, J. Anal. Math. 145 (1997), 312–322
  9. Z. Gan, An exposition of the connection between limit-periodic potentials and profinite groups, Math. Model. Nat. Phenom. 5:4 (2010), 158–174 [CrossRef] [EDP Sciences]
  10. J. Wilson. Profinite Groups, Oxford University Press, New York, USA, 1998

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.