Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 82 - 105
DOI https://doi.org/10.1051/mmnp/20138106
Published online 28 January 2013
  1. E. J. Candès, L. Demanet. The curvelet representation of wave propagators is optimally sparse. Comm. Pure Appl. Math. 58 (2005), 1472–1528. [CrossRef] [MathSciNet]
  2. E. J. Candès, L. Demanet, D. Donoho, L. Ying. Fast Discrete Curvelet Transforms. Multiscale Model. Simul. 5 (2006), 861–899. [CrossRef]
  3. E. J. Candès, D. L. Donoho. Ridgelets : the key to high dimensional intermittency?. Philosophical Transactions of the Royal Society of London A 357 (1999), 2495–2509. [NASA ADS] [CrossRef] [MathSciNet]
  4. E. J. Candès, D. L. Donoho. New tight frames of curvelets and optimal representations of objects with C2 singularities. Comm. Pure Appl. Math. 57 (2004), 219–266. [CrossRef]
  5. F. Colonna, G. Easley, K. Guo, D. Labate. Radon Transform Inversion using the Shearlet Representation. Appl. Comput. Harmon. Anal. 29 (2) (2010), 232–250. [CrossRef]
  6. S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, G. Teschke. The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), 157–181. [CrossRef] [MathSciNet]
  7. M. N. Do, M. Vetterli. The contourlet transform : an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14 (2005), 2091–2106. [CrossRef] [PubMed]
  8. D. L. Donoho. Wedgelets : Nearly-minimax estimation of edges. Annals of Statistics, 27 (1999), 859–897. [CrossRef]
  9. G. R. Easley, D. Labate, F. Colonna. Shearlet-Based Total Variation Diffusion for Denoising. IEEE Trans. Image Proc. 18 (2) (2009), 260–268. [CrossRef]
  10. G. R. Easley, D. Labate, W. Lim. Sparse Directional Image Representations using the Discrete Shearlet Transform. Appl. Comput. Harmon. Anal. 25 (1) (2008), 25–46. [CrossRef]
  11. P. Grohs. Tree Approximation with anisotropic decompositions. Appl. Comput. Harmon. Anal. 33(1) (2012), 44–57. [CrossRef]
  12. P. Grohs. Bandlimited Shearlet Frames with nice Duals. SAM Report 2011-55, ETH Zurich, July 2011.
  13. K. Guo, G. Kutyniok, D. Labate. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators in : Wavelets and Splines, G. Chen and M. Lai (eds.), Nashboro Press, Nashville, TN (2006), pp. 189–201.
  14. K. Guo, D. Labate. Optimally Sparse Multidimensional Representation using Shearlets. SIAM J. Math. Anal. 9 (2007), 298–318 [CrossRef] [MathSciNet]
  15. K. Guo, D. Labate. Representation of Fourier Integral Operators using Shearlets. J. Fourier Anal. Appl. 14 (2008), 327–371 [CrossRef]
  16. K. Guo, D. Labate. Characterization and analysis of edges using the continuous shearlet transform. SIAM J. Imag. Sci. 2 (2009), 959–986. [CrossRef]
  17. K. Guo, D. Labate. Optimally sparse 3D approximations using shearlet representations. Electron. Res. Announc. Math. Sci. 17 (2010), 126–138.
  18. K. Guo, D. Labate. Optimally sparse representations of 3D Data with C2 surface singularities using Parseval frames of shearlets. SIAM J Math. Anal. 44 (2012), 851–886. [CrossRef] [MathSciNet]
  19. K. Guo, D. Labate, W.-Q. Lim. Edge analysis and identification using the Continuous Shearlet Transform. Appl. Comput. Harmon. Anal. 27 (2009), 24–46. [CrossRef]
  20. K. Guo, D. Labate, W.-Q Lim, G. Weiss, E. Wilson. Wavelets with composite dilations. Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 78–87. [CrossRef] [MathSciNet]
  21. K. Guo, D. Labate, W-Q. Lim, G. Weiss, E. Wilson. The theory of wavelets with composite dilations. in : Harmonic Analysis and Applications, C. Heil (ed.), Birkhäuser, Boston, MA, 2006.
  22. K. Guo, W-Q. Lim, D. Labate, G. Weiss, E. Wilson. Wavelets with composite dilations and their MRA properties. Appl. Computat. Harmon. Anal. 20 (2006), 231–249. [CrossRef]
  23. B. Han. Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. Appl. Comput. Harmon. Anal. 29 (2010), 330–353. [CrossRef]
  24. B. Han. Nonhomogeneous wavelet systems in high dimensions. Appl. Comput. Harmon. Anal. 32 (2012), 169–196. [CrossRef]
  25. R. Houska. The nonexistence of shearlet scaling functions. Appl. Comput Harmon. Anal. 32 (1) (2012), 28–44. [CrossRef]
  26. P. Kittipoom, G. Kutyniok, W.-Q Lim. Construction of compactly supported shearlet frames. Constr. Approx., to appear (2012).
  27. G. Kutyniok. Sparsity Equivalence of Anisotropic Decompositions. preprint (2012).
  28. G. Kutyniok, D. Labate. Resolution of the wavefront set using continuous shearlets. Trans. Amer. Math. Soc. 361 (2009), 2719–2754. [CrossRef] [MathSciNet]
  29. G. Kutyniok, W.-Q. Lim. Compactly supported shearlets are optimally sparse. J. Approx. Theory 163 (2011), 1564–1589. [CrossRef] [MathSciNet]
  30. G. Kutyniok, T. Sauer. Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis. SIAM J. Math. Anal. 41 (2009), 1436–1471. [CrossRef] [MathSciNet]
  31. D. Labate, W.-Q Lim, G. Kutyniok, G. Weiss. Sparse multidimensional representation using shearlets. in Wavelets XI, edited by M. Papadakis, A. F. Laine, and M. A. Unser, SPIE Proc. 5914 (2005), SPIE, Bellingham, WA, 2005, 254–262.
  32. Y. Meyer, R. Coifman. Wavelets, Calderón-Zygmund Operators and Multilinear Operators. Cambridge Univ. Press, Cambridge, 1997.
  33. P. S. Negi, D. Labate. 3D Discrete Shearlet Transform and Video Processing. IEEE Trans. Image Process. 21 (6) (2012), 2944–2954. [CrossRef] [MathSciNet] [PubMed]
  34. V.M. Patel, G. Easley, D. M. Healy. Shearlet-based deconvolution. IEEE Trans. Image Process. 18 (12) (2009), 2673-2685 [CrossRef] [MathSciNet] [PubMed]
  35. S. Yi, D. Labate, G. R. Easley, H. Krim. A Shearlet approach to Edge Analysis and Detection. IEEE Trans. Image Process 18 (5) (2009), 929–941. [CrossRef] [MathSciNet] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.