Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 106 - 121
Published online 28 January 2013
  1. A. R. Bishop, K. Fesser, P. S. Lomdahl. Influence of solitons in the initial state on chaos in the driven damped sine-Gordon system. Physica D, 7 (1983), 259–279. [CrossRef] [Google Scholar]
  2. N. Dunford, J. Schwartz. Linear operators, Part I. Wiley & Sons, New York, NY. Reprint of the 1958 original, 1988. [Google Scholar]
  3. L. C. Evans. Partial differential equations. Graduate studies in Mathematics, vol. 19. American Mathematical Society, Providence, R.I, 1998. [Google Scholar]
  4. S. Gutman, J. Ha. Identifiability of piecewise constant conductivity in a heat conduction process. SIAM J. Control and Optimization, 46 (2) (2007), 694–713. [Google Scholar]
  5. S. Gutman, J. Ha. Parameter identifiability for heat conduction with a boundary input. Math. Comp. Simul., 79 (2009), 2192–2210. [CrossRef] [Google Scholar]
  6. J. Ha, S. Gutman. Optimal parameters for a damped sine-Gordon equation. J. Korean Math. Soc., 46 (2009), 1105–1117. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Ha, S. Nakagiri. Identification of constant parameters in perturbed sine-Gordon equations. J. Korean Math. Soc., 43(5) (2006), 931–950. [CrossRef] [MathSciNet] [Google Scholar]
  8. V. Isakov. Inverse problems for partial differential equations. Second edition. Applied Mathematical Sciences, vol. 127. Springer, New York, 2006. [Google Scholar]
  9. S. Kitamura, S. Nakagiri. Identifiability of spatially-varying and constant parameters in distributed systems of parabolic type. SIAM J. Control and Optimization, 15 (1977), 785–802. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Levi. Beating modes in the Josephson junction. Chaos in Nonlinear Dynamical Systems, J. Chandra (Ed.) (1984), SIAM, Philadelphia. [Google Scholar]
  11. J. L. Lions. Optimal control of systems governed by partial differential equations. Springer-Verlag, New York, 1971. [Google Scholar]
  12. A. C. Metaxas, R. J. Meredith. Industrial microwave heating. Peter Peregrinus, London, 1993. [Google Scholar]
  13. S. Nakagiri. Review of Japanese work of the last 10 years on identifiability in distributed parameter systems. Inverse Problems, 9(2) (1993), 143–191. [CrossRef] [Google Scholar]
  14. R. Ortega, A. M. Robles-Perez. A maximum principle for periodic solutions of the telegraph equation. J. Math. Anal. Appl., 221 (1998), 625–651. [CrossRef] [Google Scholar]
  15. A. Pierce. Unique identification of eigenvalues and coefficients in a parabolic problem. SIAM J. Control and Optimization, 17(4) (1979), 494–499. [CrossRef] [MathSciNet] [Google Scholar]
  16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recepies in FORTRAN, 2nd ed. Cambridge University Press, Cambridge, 1992. [Google Scholar]
  17. N. F. Smyth, A. L. Worthy. Soliton evolution and radiation loss for the sine-Gordon equation. Physical Reviews E, (1999), 2330–2336. [Google Scholar]
  18. M. Taylor. Partial differential equations I. Basic theory. Second edition. Applied Mathematical Sciences, vol. 115. Springer, New York, 2011. [Google Scholar]
  19. R. Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed. Applied Mathematical Sciences, vol. 68, Springer-Verlag, 1997. [Google Scholar]
  20. K. Yosida. Functional Analysis, 6th ed. Springer-Verlag, 1980. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.