Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 122 - 131
DOI https://doi.org/10.1051/mmnp/20138108
Published online 28 January 2013
  1. A. Ali, H. Kalisch. Mechanical balance laws for Boussinesq models of surface water waves. J. Nonlinear Sci. (2012) 22, 371-498. [CrossRef] [MathSciNet]
  2. S. Balasuriya. Vanishing viscosity in the barotropic β-plane. J. Math. Anal. Appl. (1997) 214, 128-150. [CrossRef] [MathSciNet]
  3. E. Dewan, R. Picard, R. O’Neil, H. Gardiner, J. Gibson. MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett. (1998) 25, 939-942. [CrossRef]
  4. A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press. (1983)
  5. G.J Haltiner, R.T. Williams. Numerical prediction and dynamic meteorology (1980).
  6. P.A. Hsieh. Application of modflow for oil reservoir simulation during the Deepwater Horizon crisis. Ground Water. (2011) 49 (3), 319-323. [CrossRef] [PubMed]
  7. R.N. Ibragimov, N.H. Ibragimov. Effects of rotation on self-resonant internal gravity waves in the ocean. Ocean Modelling, (2010) 31, 80-87. [CrossRef]
  8. N.H. Ibragimov, R.N. Ibragimov. Applications of Lie group analysis in Geophysical Fluid Dynamics. Series on Complexity and Chaos, V2, World Scientific Publishers (2011) .
  9. N.H. Ibragimov, R.N. Ibragimov. Integration by quadratures of the nonlinear Euler equations modeling atmospheric flows in a thin rotating spherical shell. Phys. Lett. A, (2011) 3858-3865.
  10. N.H. Ibragimov, R.N. Ibragimov. Rotationally symmetric internal gravity waves. Int. J. Non-Linear Mech., (2012) 46-52.
  11. E.D. Maloney, D. L. Hartmann. The Madden–Julian Oscillation, Barotropic Dynamics, and North Pacific Tropical Cyclone Formation. Part I : Observations. J. Atmos. Sci. (2001) 58 (17), 2545–2558. [CrossRef]
  12. J.P. McCreary. Eastern tropical ocean response to changing wind systems with applications to El Niño. J. Phys. Oceanogr. (1976) 6, 632-645. [CrossRef]
  13. J.P. McCreary. A linear stratified ocean model of the equatorial undercurrent. Phil. Trans. Roy. Soc. London. (1981) 302, 385-413. [CrossRef]
  14. J.P. McCreary. Equatorial beams. J. Mar. Res. (1984) 42, 395-430. [CrossRef]
  15. D.W. Moore, R.C. Kloosterzeil, W.S. Kessler. Evolution of mixed Rossby gravity waves. J. Geophys. Res. (1998) 103 (C3), 5331-5346. [CrossRef]
  16. D. Nethery, D. Shankar. Vertical propagation of baroclinic Kelvin waves along the west coast of India. J. Earth. Syst. Sci. (2007) 116 (4), 331-339. [CrossRef]
  17. L.V. Ovsyannikov. Lectures on the theory of group properties of differential equations. Novosibirsk University press, Novosibirsk, 1966. English transl., ed. Ibragimov, N., ALGA Publications, Karlskrona, 2009.
  18. R.D. Romea, J.S. Allen. On vertically propagating coastal Kelvin waves at low latitudes. J. Phys. Oceanogr. (1983) 13 (1), 241-1,254.
  19. D.T. Shindell, G.A. Schmidt. Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Res. Lett., (2004) 31, L18209. [CrossRef]
  20. C. Staquet, J. Sommeria. Internal Gravity Waves : From instabilities to turbulence. Annu. Rev. Fluid Mech. (2002) 34, 559-593. [NASA ADS] [CrossRef]
  21. R. Szoeke, R.M. Samelson. The duality between the Boussinesq and non-Boussinesq hydrostatic equations of motion. J. Phys. Oceanogr. (2002) 32, 2194-2203. [CrossRef] [MathSciNet]
  22. J.M. Wallace, P.V. Hobbs.Atmospheric Science : An Introductory Survey. Academic Press, (1977) Inc. 76–77.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.