Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 122 - 131
Published online 28 January 2013
  1. A. Ali, H. Kalisch. Mechanical balance laws for Boussinesq models of surface water waves. J. Nonlinear Sci. (2012) 22, 371-498. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Balasuriya. Vanishing viscosity in the barotropic β-plane. J. Math. Anal. Appl. (1997) 214, 128-150. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Dewan, R. Picard, R. O’Neil, H. Gardiner, J. Gibson. MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett. (1998) 25, 939-942. [CrossRef] [Google Scholar]
  4. A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press. (1983) [Google Scholar]
  5. G.J Haltiner, R.T. Williams. Numerical prediction and dynamic meteorology (1980). [Google Scholar]
  6. P.A. Hsieh. Application of modflow for oil reservoir simulation during the Deepwater Horizon crisis. Ground Water. (2011) 49 (3), 319-323. [CrossRef] [PubMed] [Google Scholar]
  7. R.N. Ibragimov, N.H. Ibragimov. Effects of rotation on self-resonant internal gravity waves in the ocean. Ocean Modelling, (2010) 31, 80-87. [CrossRef] [Google Scholar]
  8. N.H. Ibragimov, R.N. Ibragimov. Applications of Lie group analysis in Geophysical Fluid Dynamics. Series on Complexity and Chaos, V2, World Scientific Publishers (2011) . [Google Scholar]
  9. N.H. Ibragimov, R.N. Ibragimov. Integration by quadratures of the nonlinear Euler equations modeling atmospheric flows in a thin rotating spherical shell. Phys. Lett. A, (2011) 3858-3865. [Google Scholar]
  10. N.H. Ibragimov, R.N. Ibragimov. Rotationally symmetric internal gravity waves. Int. J. Non-Linear Mech., (2012) 46-52. [Google Scholar]
  11. E.D. Maloney, D. L. Hartmann. The Madden–Julian Oscillation, Barotropic Dynamics, and North Pacific Tropical Cyclone Formation. Part I : Observations. J. Atmos. Sci. (2001) 58 (17), 2545–2558. [CrossRef] [Google Scholar]
  12. J.P. McCreary. Eastern tropical ocean response to changing wind systems with applications to El Niño. J. Phys. Oceanogr. (1976) 6, 632-645. [CrossRef] [Google Scholar]
  13. J.P. McCreary. A linear stratified ocean model of the equatorial undercurrent. Phil. Trans. Roy. Soc. London. (1981) 302, 385-413. [CrossRef] [Google Scholar]
  14. J.P. McCreary. Equatorial beams. J. Mar. Res. (1984) 42, 395-430. [CrossRef] [Google Scholar]
  15. D.W. Moore, R.C. Kloosterzeil, W.S. Kessler. Evolution of mixed Rossby gravity waves. J. Geophys. Res. (1998) 103 (C3), 5331-5346. [CrossRef] [Google Scholar]
  16. D. Nethery, D. Shankar. Vertical propagation of baroclinic Kelvin waves along the west coast of India. J. Earth. Syst. Sci. (2007) 116 (4), 331-339. [CrossRef] [Google Scholar]
  17. L.V. Ovsyannikov. Lectures on the theory of group properties of differential equations. Novosibirsk University press, Novosibirsk, 1966. English transl., ed. Ibragimov, N., ALGA Publications, Karlskrona, 2009. [Google Scholar]
  18. R.D. Romea, J.S. Allen. On vertically propagating coastal Kelvin waves at low latitudes. J. Phys. Oceanogr. (1983) 13 (1), 241-1,254. [Google Scholar]
  19. D.T. Shindell, G.A. Schmidt. Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Res. Lett., (2004) 31, L18209. [Google Scholar]
  20. C. Staquet, J. Sommeria. Internal Gravity Waves : From instabilities to turbulence. Annu. Rev. Fluid Mech. (2002) 34, 559-593. [NASA ADS] [CrossRef] [Google Scholar]
  21. R. Szoeke, R.M. Samelson. The duality between the Boussinesq and non-Boussinesq hydrostatic equations of motion. J. Phys. Oceanogr. (2002) 32, 2194-2203. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.M. Wallace, P.V. Hobbs.Atmospheric Science : An Introductory Survey. Academic Press, (1977) Inc. 76–77. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.