Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 215 - 229
DOI https://doi.org/10.1051/mmnp/20138117
Published online 28 January 2013
  1. J.-P. Antoine, R. Murenzi, P. Vandergheynst, S. T. Ali. Two-Dimensional Wavelets and their Relatives. Cambridge University Press, 2004. [Google Scholar]
  2. L. Cohen. Time-Frequency Analysis. Prentice Hall, 1995. [Google Scholar]
  3. E. Cordero, F. De Mari, K. Nowak, A. Tabacco. Analytic features of reproducing groups for the metaplectic representation. J. Fourier Anal. Appl. 12 (2006), 157–180. [CrossRef] [Google Scholar]
  4. A. Cordoba, C. Fefferman. Wave packets and Fourier integral operators. Comm. Partial Differential Equations 3 (1978), 979–1005. [CrossRef] [MathSciNet] [Google Scholar]
  5. I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992. [Google Scholar]
  6. M. G. Eramian, R. A. Schincariol, L. Mansinha, R. G. Stockwell. Generation of aquifer heterogeneity maps using two dimensional spectral texture segmentation techniques. Math. Geology 31 (1999), 327–348. [CrossRef] [Google Scholar]
  7. G. B. Folland. Harmonic Analysis in Phase Space. Princeton University Press, 1989. [Google Scholar]
  8. B. G. Goodyear, H. Zhu, R. A. Brown, J. R. Mitchell. Removal of phase artifacts from fMRI data using a Stockwell transform filter improves brain activity detection. Magn. Reson. Med. 51 (2004), 16–21. [CrossRef] [PubMed] [Google Scholar]
  9. A. Grossmann, J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape SIAM J. Math. Anal. 15 (1984), 723–736. [CrossRef] [MathSciNet] [Google Scholar]
  10. Q. Guo, S. Molahajloo, M. W. Wong. Modified Stockwell transforms and time-frequency analysis in New Developments in Pseudo-Differential Operators. Operator Theory : Advances and Applications 189, Birkhäuser, 2009, 275–285. [Google Scholar]
  11. Q. Guo, M. W. Wong. Modified Stockwell transforms, Memorie della Accademia delle Scienze di Torino, Classe di Scienze, Fische. Matematiche e Naturali, Serie V, Vol. 32 (2008), 3–20. [Google Scholar]
  12. Y. Liu and M. W. Wong. Inversion formulas for two-dimensional Stockwell transforms, in Pseudo-Differential Operators : Partial Differential Equations and Time-Frequency Analysis. Fields Institute Communications 52, American Mathematical Society, 2007, 323–330. [Google Scholar]
  13. R. G. Stockwell, L. Mansinha, R. P. Lowe. Localization of the complex spectrum : the S transform. IEEE Trans. Signal Processing 44 (1996), 998–1001. [CrossRef] [Google Scholar]
  14. D. Bernier, K. F. Taylor. Wavelets from square-integrable representations. SIAM J. Math. Anal. 27 (1996), 594–608. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. W. Wong. Weyl Transforms. Springer, 1998. [Google Scholar]
  16. M. W. Wong. Wavelet Transforms and Localization Operators. Birkhäuser, 2002. [Google Scholar]
  17. M. W. Wong, H. Zhu. A characterization of the Stockwell spectrum, in Modern Trends in Pseudo-Differential Operators. Birkhäuser, 2007, 251–257. [Google Scholar]
  18. H. Zhu, B. G. Goodyear, M. L. Lauzon, R. A. Brown, G. S. Mayer, L. Mansinha, A. G. Law, J. R. Mitchell. A new multiscale Fourier analysis for MRI. Med. Phys. 30 (2003), 1134–1141. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.