Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 215 - 229
DOI https://doi.org/10.1051/mmnp/20138117
Published online 28 January 2013
  1. J.-P. Antoine, R. Murenzi, P. Vandergheynst, S. T. Ali. Two-Dimensional Wavelets and their Relatives. Cambridge University Press, 2004.
  2. L. Cohen. Time-Frequency Analysis. Prentice Hall, 1995.
  3. E. Cordero, F. De Mari, K. Nowak, A. Tabacco. Analytic features of reproducing groups for the metaplectic representation. J. Fourier Anal. Appl. 12 (2006), 157–180. [CrossRef]
  4. A. Cordoba, C. Fefferman. Wave packets and Fourier integral operators. Comm. Partial Differential Equations 3 (1978), 979–1005. [CrossRef] [MathSciNet]
  5. I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.
  6. M. G. Eramian, R. A. Schincariol, L. Mansinha, R. G. Stockwell. Generation of aquifer heterogeneity maps using two dimensional spectral texture segmentation techniques. Math. Geology 31 (1999), 327–348. [CrossRef]
  7. G. B. Folland. Harmonic Analysis in Phase Space. Princeton University Press, 1989.
  8. B. G. Goodyear, H. Zhu, R. A. Brown, J. R. Mitchell. Removal of phase artifacts from fMRI data using a Stockwell transform filter improves brain activity detection. Magn. Reson. Med. 51 (2004), 16–21. [CrossRef] [PubMed]
  9. A. Grossmann, J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape SIAM J. Math. Anal. 15 (1984), 723–736. [CrossRef] [MathSciNet]
  10. Q. Guo, S. Molahajloo, M. W. Wong. Modified Stockwell transforms and time-frequency analysis in New Developments in Pseudo-Differential Operators. Operator Theory : Advances and Applications 189, Birkhäuser, 2009, 275–285.
  11. Q. Guo, M. W. Wong. Modified Stockwell transforms, Memorie della Accademia delle Scienze di Torino, Classe di Scienze, Fische. Matematiche e Naturali, Serie V, Vol. 32 (2008), 3–20.
  12. Y. Liu and M. W. Wong. Inversion formulas for two-dimensional Stockwell transforms, in Pseudo-Differential Operators : Partial Differential Equations and Time-Frequency Analysis. Fields Institute Communications 52, American Mathematical Society, 2007, 323–330.
  13. R. G. Stockwell, L. Mansinha, R. P. Lowe. Localization of the complex spectrum : the S transform. IEEE Trans. Signal Processing 44 (1996), 998–1001. [CrossRef]
  14. D. Bernier, K. F. Taylor. Wavelets from square-integrable representations. SIAM J. Math. Anal. 27 (1996), 594–608. [CrossRef] [MathSciNet]
  15. M. W. Wong. Weyl Transforms. Springer, 1998.
  16. M. W. Wong. Wavelet Transforms and Localization Operators. Birkhäuser, 2002.
  17. M. W. Wong, H. Zhu. A characterization of the Stockwell spectrum, in Modern Trends in Pseudo-Differential Operators. Birkhäuser, 2007, 251–257.
  18. H. Zhu, B. G. Goodyear, M. L. Lauzon, R. A. Brown, G. S. Mayer, L. Mansinha, A. G. Law, J. R. Mitchell. A new multiscale Fourier analysis for MRI. Med. Phys. 30 (2003), 1134–1141. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.