Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 230 - 236
Published online 28 January 2013
  1. J. J. Duistermaat, Fourier integral operators. Birkhäuser, Boston, 1996.
  2. S. Łojasiewicz. Introduction to complex analytic geometry. Birkhäuser, Basel, 1991.
  3. F. Nicola. Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations. Studia Math., 198 (2010), 207–219. [CrossRef] [MathSciNet]
  4. R. Remmert. Holomorphe und meromorphe Abbildungen komplexer Räume. Math. Ann. 133 (1957), 328–370. [CrossRef] [MathSciNet]
  5. M. Ruzhansky. Analytic Fourier integral operators, Monge–Ampere equation and holomorphic factorization. Arch. Math., 72 (1999), 68–76. [CrossRef] [MathSciNet]
  6. M. Ruzhansky. On singularities of affine fibrations of certain types. Russian Math. Surveys, 55 (2000), 353–354. [CrossRef] [MathSciNet]
  7. M. Ruzhansky. Singularities of affine fibrations in the regularity theory of Fourier integral operators. Russian Math. Surveys, 55 (2000), 93–161. [CrossRef] [MathSciNet]
  8. M. Ruzhansky. Regularity theory of Fourier integral operators with complex phases and singularities of affine fibrations. CWI Tracts , vol. 131, 2001.
  9. M. Ruzhansky. On the failure of the factorization condition for non-degenerate Fourier integral operators. Proc. Amer. Math. Soc., 130 (2002), 1371–1376. [CrossRef] [MathSciNet]
  10. A. Seeger, C. D. Sogge, E. .M. Stein. Regularity properties of Fourier integral operators. Ann. of Math. 134 (1991), 231–251. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.