Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 3, 2013
Front Propagation
Page(s) 104 - 132
Published online 12 June 2013
  1. S. Ai, W. Huang. Traveling wave fronts in combustion and chemical reaction models. Proc. Royal Soc. Edin. A, 137 (2007), 671–700. [CrossRef] [Google Scholar]
  2. J. Alexander, R. Gardner, C. Jones. A topological invariant arising in the stability of traveling waves. J. Reine Angew. Math., 410 (1990), 167-212. [MathSciNet] [Google Scholar]
  3. N.J. Balmforth, R.V. Crastev, J.A. Malham. Unsteady fronts in an autocatalytic system. Proc. R. Soc. Lond. A, 455 (1999), 1401-1433. [CrossRef] [Google Scholar]
  4. J.W. Bebernes, C.-M. Li, Y. Li. Traveling fronts in cylinders and their stability. Rocky Mountain J. Math., 27 (1997), 123-150. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Berestycki, L. Nirenberg. Traveling fronts in cylinders. Ann. Institute. Henri Poincare, Analysis non lineaire, 9 (1992), 497-572. [Google Scholar]
  6. J. Billingham, D.J. Needham. A note on the properties of a family of traveling wave solutions arising in cubic autocatalysis. Dyn. Stab. Syst., 6 (1991), 33-49. [CrossRef] [Google Scholar]
  7. M. Bramson. Convergence of solutions of the Kolmogorov equations to travelling waves. Mem. Amer. Math. Soc., 44 (1983). [Google Scholar]
  8. J. Carr. Application of centre manifold theory. Applied Mathematical Sciences, Vol.35, Springer-Verlag, New York, 1981. [Google Scholar]
  9. X.F. Chen, Y.W. Qi. Sharp estimates on minimum travelling wave speed of reacton-diffusion systems modelling auto-catalyst. SIAM J.Math. Anal., 39 (2007), 437-448. [CrossRef] [MathSciNet] [Google Scholar]
  10. X.F. Chen, Y.W. Qi. Travelling waves of auto-catalytic chemical reaction of general order- An elliptic approach. J. Differential Equations, 246 (2009), 3038-3057. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Focant, Th. Galley. Existence and stability of propagating fronts for an autocatalytic reactio-diffuion systems. Physica D, 120 (1998), 346-368. [CrossRef] [Google Scholar]
  12. A. Ghazaryan, Y. Latushkin, S. Schecter. Stability of traveling waves for a class of reaction-diffusion systems that arise in chemical reaction models. SIAM J. Math. Anal., 42 (2010), 2434-2472. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Hamel, L. Roques. Fast propagation for KPP equations with slowly decaying initial conditions. J. Differential Equations, 249 (2010), 1726-1745. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Henry. Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics 840, Springer-Verlag, New York, 1981. [Google Scholar]
  15. Y. Hosono. Propagation speeds of traveling fronts for higher order autocatalytic reaction-diffusion systems. Japan J. Indust. Appl. Math., 24 (2007), 79-104. [CrossRef] [MathSciNet] [Google Scholar]
  16. X. Hou, Y. Li. Local stability of traveling wave solutions of nonlinear reaction-diffusion equations, Discrete Contin. Dyn. Syst., 15 (2006), 681-701. [CrossRef] [MathSciNet] [Google Scholar]
  17. T. Kato. Peturbation theory for linear operators. corrected printing of the second edition, Springer-Verlag, Berlin, 1980. [Google Scholar]
  18. K. Kirchgässner, G. Raugel. Stability of fronts for a KPP-System II - the critical case -. J. Differential Equations, 146 (1998), 399-456. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Marion. Qualitative properties of a nonlinear system for laminar flames without ignition temerature. Nonl. Anal. TMA, 9 (1998), 1269-1292. [CrossRef] [Google Scholar]
  20. M.J. Metcalf, J.H. Merkin, S.K. Scott. Oscillating wave fronts in isothermal chemical systems with arbitary powers of autocatalysis. Proc. R. Soc. Lond. B, 447 (1994), 155-174. [CrossRef] [Google Scholar]
  21. Y. Li, Y. Wu. Stability of traveling front solutions with algebraic spatial decay for some auto-catalytic chemical reaction systems. SIAM J. Math. Anal., 44 (2012), 1474-1521. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. de Pablo, J. L. Vazquez. Travelling wave behavior for a Porous-Fisher equations. Euro. J. Applied Mathematics, 9 (1998), 285-304. [Google Scholar]
  23. R.L. Pego, M.I. Weinstein. Eigenvalues, and instability of solitary waves. Philos. Trans. Roy. Soc. London Ser. A, 340 (1992), 47-94. [Google Scholar]
  24. F. Rothe. Covergence to travelling fronts in semilinear parabolic equations. Proc. Roy. Soc. Edinburgh, Sect A, 80 (1978), 213-234. [CrossRef] [MathSciNet] [Google Scholar]
  25. D.H. Sattinger. On the stability of waves of nonlinear parabolic systems. Advances in Math., 22 (1976), 312-255. [Google Scholar]
  26. J.A. Sherratt, B.P. Marchant. Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation. IMA J. Appl. Math., 56 (1996), 289-302. [CrossRef] [MathSciNet] [Google Scholar]
  27. H. Takase, B.D. Sleeman. Travelling-wave solutions to monostable reaction-diffusion systems of mixed monotone type. Proc. R. Soc. Lond. A, 455 (1999), 1561-1598. [CrossRef] [Google Scholar]
  28. K. Uchiyama. The behaviour of solutions of some semilinear diffusion equations for large time. J. Math. Kyoto. Univ., 18 (1978), 453-508. [MathSciNet] [Google Scholar]
  29. Y. Wu, Y.X. Wu. Asymptotic behavior of solution to degeneate Fisher equations with algebraic decaying initial values. peprint. [Google Scholar]
  30. Y. Wu, X. Xing. The stability of travelling waves with critical speeds for p-degree Fisher-type equation. Discrete Contin. Dyn. Syst. A, 20 (2008), 1123-1139. [CrossRef] [Google Scholar]
  31. Y. Wu, X. Xing. The stability of travelling fronts for general scalar viscous balance law. J. Math. Anal. Appl., 305 (2005), 698-711. [CrossRef] [Google Scholar]
  32. Y. Wu, X. Xing, Q. Ye. Stability of traveling waves with algebraic decay for n-degree Fisher-type equations. Discrete Contin. Dyn. Syst. A, 16 (2006), 47-66. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.