Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 3, 2013
Front Propagation
Page(s) 154 - 181
DOI https://doi.org/10.1051/mmnp/20138310
Published online 12 June 2013
  1. D. Afolabi. Sylvester eliminant and stability criteria for gyroscopic systmes. Journal of Sound and Vibration, vol. 182(2), (1995), 229-244. [CrossRef] [Google Scholar]
  2. F. Brauer. On the populations of Competing Species. Mathematical Biosciences, vol. 19, (1974), 299-306. [CrossRef] [Google Scholar]
  3. J. Billingham. Dynamics of a strongly nonlocal reaction-diffusion population model. Nonlinearity, vol. 17, (2004), 313-346. [CrossRef] [Google Scholar]
  4. J. Billingham. Phase plane analysis of one-dimensional reaction diffusion waves with degenerate reaction terms. Dynamics and Stability of Systems, vo. 15 (2001), 23-33. [CrossRef] [Google Scholar]
  5. J.D. Murray. Mathematical Biology I: An introduction. Springer-Verlag, New York, 2002. [Google Scholar]
  6. J.F. AL-Omari, S. A. Gourley. Stability And Travelling Fronts In Lotka-Voltera Competition Models With Stage Structure. J. Appl. Math, vol. 63, (2003), 2063–2086. [Google Scholar]
  7. K. Gopalsamy. Exchange of Equilibria in Two Species Lotka-Voltera Competition Models. J. Austral. Math. Soc., vol. 24, (1982), 160–170. [CrossRef] [Google Scholar]
  8. K. Hardler, F. Rothe. Travelling fronts in nonlinear diffusion equations. Math. Biol., vol. 2, (1975), 251–263. [CrossRef] [MathSciNet] [Google Scholar]
  9. N. Britton. Reaction-Diffusion Equations And Their Applications To Biology. Academic Press INC. (London) LTD, 1986. [Google Scholar]
  10. N. F. Britton. Spatial structures and Periodic travelling waves in an integro-differential reaction-diffusion population model. Siam Journal on Applied Mathematics, vol.50, No.6 (1990), 1663-1688. [Google Scholar]
  11. S. A. Gourley. Two-Species Competition With High Dispersal: The Winning Strategy. Mathematical Biosciences And Engineering, vol.2, No.2 (2005), 345-362. [CrossRef] [MathSciNet] [Google Scholar]
  12. V. Volpert, S. Petrovskii. Reaction-diffusion waves in biology. Physics of Life Reviews, vol.6, (2009), 267-310. [Google Scholar]
  13. Y. Hosono. Travelling Waves For A Diffusive Lotka-Voltera Compettion Model I: Singular Perturbations. Discrete And Continous Dynamical Systems-Series B, vol. 3, (2003), 97-95. [Google Scholar]
  14. Z. Li. Asymptotic Behaviour of Travelling Wavefronts of Lotka-Voltera Competitive System. Int. Journal of Math. Analysis, vol. 2, (2008), 1295–1300. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.