Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 3, 2013
Front Propagation
Page(s) 182 - 197
DOI https://doi.org/10.1051/mmnp/20138311
Published online 12 June 2013
  1. M. Abel, M. Cencini, D. Vergni, A. Vulpiani. Front speed enhancement in cellular flows. Chaos, 12 (2002), pp. 481–488. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. D.N. Arnold, A. Mukherjee, L. Pouly. Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput., 22 (2000), pp. 431–448. [CrossRef] [Google Scholar]
  3. B. Audoly, H. Berestycki, Y. Pomeau. Réaction diffusion en écoulement stationnaire rapide. C. R. Acad. Sci. Paris 328, Série IIb, 2000, pp. 255–262. [Google Scholar]
  4. I. Babuška, J.E. Osborn. Eigenvalue problems. in: Handbook of Numerical Analysis. Volume II, North-Holland, 1991, pp. 641–787. [Google Scholar]
  5. I. Babuška, M. Vogelius. Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math., 44 (1984), pp. 75–102. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Beattie. Galerkin eigenvector approximations. Math. Comput., 69 (2000), pp. 1400–1434. [Google Scholar]
  7. H. Berestycki, F. Hamel. Front propagation in periodic excitable media. Comm. Pure Appl. Math., 55 (2002), pp. 949–1032. [CrossRef] [MathSciNet] [Google Scholar]
  8. H. Berestycki, F. Hamel, N. Nadirashvili. Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena. Comm. Math. Physics, 253 (2005), pp 451–480. [CrossRef] [Google Scholar]
  9. L. Biferale, A. Crisanti, M. Vergassola, A. Vulpiani. Eddy diffusivities in scalar transport. Phys. Fluids, 7 (1995), pp. 2725–2734. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Bourlioux, B. Khouider. Rigorous asymptotic perspective on the large scale simulations of turbulent premixed flames. Multiscale Model. Simul., 6 (2007), pp. 287–307. [CrossRef] [Google Scholar]
  11. J. Brandts, M. Krizek. Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal., 33 (2003), pp. 1–17. [Google Scholar]
  12. S. Childress, A.M. Soward. Scalar transport and alpha-effect for a family of cat’s eye flows. J. Fluid Mech, 205 (1989), pp. 99–133. [CrossRef] [Google Scholar]
  13. P. Clavin, F. Williams. Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech., 90 (1979), pp. 598–604. [CrossRef] [Google Scholar]
  14. P. Constantin, A. Kiselev, A. Oberman, L. Ryzhik. Bulk burning rate in passive-reactive diffusion. Arch. Rat. Mech. Anal., 154 (2000), pp. 53–91. [CrossRef] [Google Scholar]
  15. R Codina. Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Engrg. 156 (1998), pp. 185–210. [CrossRef] [MathSciNet] [Google Scholar]
  16. X. Dai, J. Xu, A. Zhou. Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math., 110 (2008), pp. 313–355. [CrossRef] [MathSciNet] [Google Scholar]
  17. T. Dombre, U. Frisch, J.M. Greene, M. Hènon, A. Mehr, A.M. Soward. Chaotic streamlines in the ABC flows, J. Fluid Mech., 67 (1986), pp. 353–391. [Google Scholar]
  18. E. Dormy, A. Soward, eds, “Mathematical Aspects of Natural Dynamics”, the Fluid Mech. of Astrophysics and Geophysics, Vol. 13, Grenoble Science and CRC Press, 2007. [Google Scholar]
  19. K. Eriksson, C. Johnson. Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comput., 60 (1993), pp. 167–188. [CrossRef] [Google Scholar]
  20. A. Fannjiang, G. Papanicolaou. Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math., 54 (1992), pp. 333–408. [CrossRef] [MathSciNet] [Google Scholar]
  21. S. Friedlander, A. Gilbert, M. Vishik. Hydrodynamic instability for certain ABC flows. Geophys. Astrophys. Fluid Dynamics, 73 (1993), pp. 97–107. [CrossRef] [Google Scholar]
  22. S. Friedlander, M. Vishik. Dynamo theory, vorticity generation, exponential stretching. Chaos, 1(1991), pp. 198–205. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  23. T.J.R. Hughes, A.N. Brooks. A multidimensional upwind scheme with no crosswind diffusion. in: Finite Element Methods for Convection Dominated Flows (Hughes, T.J.R., ed.), New York, ASME, 1979. [Google Scholar]
  24. C. Johnson, U. Nävert, J. Pitkäranta. Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg., 45 (1984), pp. 285–312. [CrossRef] [MathSciNet] [Google Scholar]
  25. C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method, Combridge Univ. Press, Cambridge, 1987. [Google Scholar]
  26. A. Majda, P. Souganidis. Flame fronts in a turbulent combustion model with fractal velocity fields. Comm. Pure Appl. Math., 51 (1998), pp. 1337–1348. [CrossRef] [MathSciNet] [Google Scholar]
  27. D. Mao, L. Shen, A. Zhou. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comput. Math., 25 (2006), pp. 135–160. [CrossRef] [Google Scholar]
  28. U. Nävert. A finite element method for convection-diffsion problems, PhD thesis, Chalmers University of Technology Göteberg, 1982. [Google Scholar]
  29. J. Nolen, J. Xin. Computing reactive front speeds in random flows by variational principle. Physica D, 237 (2008), pp. 3172–3177. [CrossRef] [Google Scholar]
  30. A. Novikov, L. Ryzhik. Boundary layers and KPP fronts in a cellular flow. Arch. Ration. Mech. Anal., 184 (2007), pp. 23–48. [CrossRef] [Google Scholar]
  31. N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000. [Google Scholar]
  32. M. Proctor, A. Gilbert, eds, “Lectures on Solar and Planetary Dynamos”, Publications of the Newton Institute, Cambridge Univ Press, 1994. [Google Scholar]
  33. P. Ronney. Some open issues in premixed turbulent combustion. in: Modeling in Combustion Science (J. D. Buckmaster and T. Takeno, Eds.), Lecture Notes in Physics, Vol. 449, Springer-Verlag, Berlin, pp. 3–22, 1995. [Google Scholar]
  34. H-G Roos, M. Stynes, L. Tobiska. Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer series in computational mathematics, 24, second edition, 2008. [Google Scholar]
  35. L. Ryzhik, A. Zlatos. KPP pulsating front speed-up by flows. Comm. Math. Sci., 5 (2007), pp. 575–593. [Google Scholar]
  36. L. Shen, J. Xin, A. Zhou. Finite element computation of KPP front speeds in random shear flows in cylinders. Multiscale Model. Simul., 7 (2008), pp. 1029–1041. [CrossRef] [Google Scholar]
  37. L. Shen, J. Xin, A. Zhou. Finite element computation of KPP front speeds in cellular and cat’s eye flows. J. Sci. Comput., 55(2), 2013, pp. 455-470. [CrossRef] [Google Scholar]
  38. L. Shen, A. Zhou. A defect correction scheme for finite element eigenvalues with applications to quantum chemistry. SIAM J. Sci. Comput., 28 (2006), pp. 321–338 [CrossRef] [Google Scholar]
  39. G. Sivashinsky. Cascade-renormalization theory of turbulent flame speed. Combust. Sci. Tech., 62 (1988), pp. 77–96. [CrossRef] [Google Scholar]
  40. R. Verfüth. A Review of a Posteriori Error Estimates and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York, 1996. [Google Scholar]
  41. R. Verfüth. Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal., 43 (2005), pp. 1766–1782. [CrossRef] [MathSciNet] [Google Scholar]
  42. F. Williams, Turbulent combustion. in: The Mathematics of Combustion (J. Buckmaster, ed.), SIAM, Philadelphia, pp. 97–131, 1985. [Google Scholar]
  43. J. Xin. An Introduction to Fronts in Random Media, Surveys and Tutorials in the Applied Mathematical Sciences, Vol. 5, Springer, 2009. [Google Scholar]
  44. J. Xin, Y. Yu. Analysis and comparison of large time front speeds in turbulent combustion models. http://arxiv.org/submit/255369, 2011. [Google Scholar]
  45. V. Yakhot. Propagation velocity of premixed turbulent flames. Comb. Sci. Tech., 60 (1988), pp. 191–214. [CrossRef] [Google Scholar]
  46. A. Zlatos. Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows. Arch Rat. Mech. Anal, 195 (2010), pp.441–453. [CrossRef] [Google Scholar]
  47. A. Zlatos. Reaction-diffusion front speed enhancement by flows. Ann. Inst. H. Poincaré, Anal. Non Linaire, 28 (2011), pp. 711–726. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.