Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 3, 2013
Front Propagation
Page(s) 198 - 205
DOI https://doi.org/10.1051/mmnp/20138312
Published online 12 June 2013
  1. M. Abel, M. Cencini, D. Vergni, A. Vulpiani. Front Speed Enhancement in Cellular Flows. Chaos 12 (2002), 481-488. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. M. Cencini, A. Torcini, D. Vergni, A. Vulpiani. Thin front propagation in steady and unsteady cellular flows. Phys. Fluids 15 (2003), 679-688. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Cardaliaguet, J. Nolen, P. E. Souganidis. Homogenization and Enhancement for the G-Equation. Arch. Rational Mech. Analysis 199 (2011), 527-561. [CrossRef] [Google Scholar]
  4. B. Denet. Possible Role of Temporal Correlations in the Bending of Turbulent Flame Velocity. Combust. Theory Model. 3 (1999), 585-589. [CrossRef] [Google Scholar]
  5. B. Khouider, A. Bourlioux, A. Majda. Parametrizing Turbulent Flame Speed-Part I: Unsteady Shears, Flame Residence Time and bending. Combust. Theory Model. 5 (2001), 295-318. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Nolen, J. Xin. Reaction-Diffusion Front Speeds in Spatially-Temporally Periodic Shear Flows. SIAM J. Multiscale Modeling and Simulation 1 (2003), 554-570. [CrossRef] [Google Scholar]
  7. J. Nolen, J. Xin. Asymptotic Spreading of KPP Reactive Fronts in Incompressible Space-Time Random Flows. Ann Inst. H. Poincaré, Analyse Non Lineaire 26 (2009), 815-839. [CrossRef] [Google Scholar]
  8. P. Cardaliaguet, P. E. Souganidis. Homogenization and Enhancement of the G-equation in Random Environments. Comm. Pure Appl. Math, to appear. [Google Scholar]
  9. Y.-Y. Liu, J. Xin, Y. Yu. Asymptotics for turbulent flame speeds of the viscous G-equation enhanced by cellular and shear flows. Arch. Rational Mech. Analysis 202 (2011), 461-492. [CrossRef] [Google Scholar]
  10. Y.-Y. Liu, J. Xin, Y. Yu. A Numerical Study of Turbulent Flame Speeds of Curvature and Strain G-equations in Cellular Flows. Physica D 243 (2013), 20-31. [CrossRef] [Google Scholar]
  11. J. Nolen, A. Novikov. Homogenization of the G-equation with incompressible random drift in two dimensions. Comm. Math Sci. 9 (2011), 561-582. [Google Scholar]
  12. J. Nolen, J. Xin. Computing reactive front speeds in random flows by variational principle. Physica D 237 (2008), 3172-3177. [CrossRef] [Google Scholar]
  13. A. Oberman. Ph.D. thesis, University of Chicago, Chicago, IL, 2001. [Google Scholar]
  14. S. Osher, R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York, NY 2002. [Google Scholar]
  15. N. Peters. Turbulent Combustion. Cambridge University Press, 2000. [Google Scholar]
  16. P.D. Ronny. Some Open Issues in Premixed Turbulent Combustion. Lecture Notes in Physics 449 (1995), 3-22. [Google Scholar]
  17. F. Williams, Turbulent Combustion. The Mathematics of Combustion (J. Buckmaster, ed.), SIAM, Philadelphia (1985) 97-131. [Google Scholar]
  18. J. Xin, Front Propagation in Heterogeneous Media. SIAM Review 42 (2000), 161-230. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Xin. An Introduction to Fronts in Random Media. Surveys and Tutorials in the Applied Mathematical Sciences 5, Springer, 2009. [Google Scholar]
  20. J. Xin, Y. Yu. Periodic Homogenization of Inviscid G-equation for Incompressible Flows. Comm. Math Sci. 8 (2010), 1067-1078. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.