Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 3, 2013
Front Propagation
Page(s) 206 - 226
Published online 12 June 2013
  1. J. D. Murray, G. F. Oster. Generation of biological pattern and form. IMA Journal of Mathematics Applied in Medicine and Biology, 1 (1984), 51-75. [Google Scholar]
  2. D, C. Lane, J. D. Murray, V. S. Manoranjan. Analysis of wave phenomena in a morphogenic mechanochemical model and an application to post-fertilization waves in eggs. IMA Journal of Mathematics Applied in Medicine and Biology, 4 (1987), 309-331. [CrossRef] [Google Scholar]
  3. C. Brière, B.C. Goodwin. Effects of calcium input/output on the stability of a system for calcium-regulated viscoelastic strain fields, Journal of Mathematical Biology, vol. 28, 585-593, 1990.Hart [CrossRef] [PubMed] [Google Scholar]
  4. B. Kaźmierczak, M. Dyzma. Mechanical effects coupled with calcium waves. Archives of Mechanics, 62(2) (2010), 121-133. [Google Scholar]
  5. B. Kaźmierczak, Z. Peradzyński. Calcium waves with fast buffers and mechanical effects, Journal of Mathematical Biology, 62 (2011), 1-38. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. G. Flores, A. Minzoni, K. Mischaikov, V. Moll. Post-fertilization travelling waves on eggs, Nonlinear Analysis: Theory, Methods and Applications. 36(1) (1999), 45-62. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. D. Murray. Mathematical Biology. 2nd ed. Springer, Berlin, 1993. [Google Scholar]
  8. J. Keener, J. Sneyd. Mathematical Physiology. Springer, New York, 1998 [Google Scholar]
  9. P. Fife. Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, Vo. 28, Springer, New York, 1979. [Google Scholar]
  10. B. Kaźmierczak, V. Volpert. Existence of heteroclinic orbits for systems satisfying monotonicity conditions. Nonlinear Analysis, 55 (2003), 467-491 [CrossRef] [MathSciNet] [Google Scholar]
  11. B. Kaźmierczak, V. Volpert. Travelling calcium waves in systems with non diffusing buffers. Math. Mod. Meth. Appl. Sci., 18 (2008), 883-912. [Google Scholar]
  12. B. Kaźmierczak, V. Volpert. Calcium waves in systems with immobile buffers a a limit of waves for systems with non zero diffusion. Nonlinearity 21 (2008), 71-96 [CrossRef] [MathSciNet] [Google Scholar]
  13. F. J. Richards. A flexible growth function for empirical use. Journal of Experimental Botany, 10(1959), 290-300. [CrossRef] [Google Scholar]
  14. Z. Peradzyński. Diffusion of calcium in biological tissues and accompanying mechano-chemical effects, Archives of Mechanics, 62(2) (2010), 423-440. [Google Scholar]
  15. K. Piechór. Reaction-diffusion equation modelling calcium waves with fast buffering in visco-elastic environment. Archives of Mechanics, 64(5) (2012), 477-509. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.