Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 4, 2013
Plant growth modelling
Page(s) 1 - 4
Published online 10 July 2013
  1. B. Basso, J.T. Ritchie, F.J. Pierce, R.P. Braga, J.W. Jones. Spatial validation of crop models for precision agriculture. Agr. Syst., 68 (2001), 97–112. [CrossRef] [Google Scholar]
  2. L.K. Brown, T.S. George, L.X. Dupuy, P.J. White. A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Ann. Bot., (2012), 1–14. [Google Scholar]
  3. V. Brukhin, N. Morozova. Plant growth and development – Basic knowledge and current views. Math. Model. Nat. Phenom., 6 (2011), 1–53. [CrossRef] [EDP Sciences] [Google Scholar]
  4. M.A.J. Chaplain. The Strain Energy Function of an Ideal Plant Cell Wall. J. Theor. Biol., 163 (1993), 77–97. [CrossRef] [Google Scholar]
  5. A. Chavarría-Krauser, D. Yejie. A model of plasma membrane flow and cytosis regulation in growing pollen tubes. J. Theor. Biol., 285 (2011), 10–24. [CrossRef] [PubMed] [Google Scholar]
  6. Y. Chebli, A. Geitmann. Mechanical principles governing pollen tube growth. Func. Plant Sci. Biotech., 1 (2007), 232–245. [Google Scholar]
  7. M. Chelle. Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for?. New Phytol., 166 (2005), 781–790. [CrossRef] [PubMed] [Google Scholar]
  8. Y. H. Chew, A.M. Wilczek, M. Williams, S.M. Welch, J. Schmitt, K.J. Halliday. An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. New Phytol., 194 (2012), 654–665. [CrossRef] [PubMed] [Google Scholar]
  9. X. Draye, Y. Kim, G. Lobet, M. Javaux. Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. J. Exp. Bot. 61 (2010), 2145–2155. [CrossRef] [PubMed] [Google Scholar]
  10. L.X. Dupuy, J. Mackenzie, J. Haseloff. Regulation of plant cell division in a simple morphogenetic system. P. Natl. Acad. Sci. USA, 107 (2010), 2711–2716. [CrossRef] [Google Scholar]
  11. R.J. Dyson, O.E. Jensen. A fibre-reinforced fluid model of anisotropic plant cell growth. J. Fluid Mech., 655 (2010), 474–503. [CrossRef] [Google Scholar]
  12. M.A. El-Sharkawy. Overview: early history of crop growth and photosynthesis modeling. BioSystems, 103 (2011), 205–211. [CrossRef] [PubMed] [Google Scholar]
  13. B.G. Forde, P.I.A. Walch-Liu. Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ., 32 (2009), 682–693. [CrossRef] [PubMed] [Google Scholar]
  14. T. Fourcaud, X. Zhang, A. Stokes, H. Lambers, C. Körner Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models. Ann. Bot., 101 (2008), 1053–1063. [CrossRef] [PubMed] [Google Scholar]
  15. A. Geitmann, J.K.E. Ortega. Mechanics and modeling of plant cell growth. Trends Plant Sci., 14 (2009), 467–478. [CrossRef] [PubMed] [Google Scholar]
  16. C. Godin, H. Sinoquet. Functional-structural plant modelling. New Phytol., 166 (2005), 705–708. [CrossRef] [PubMed] [Google Scholar]
  17. A. Goriely, D.E. Moulton, R. Vandiver. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues. EPL-EuroPhys. Lett., 91 (2010), 18001. [CrossRef] [EDP Sciences] [Google Scholar]
  18. A. Goriely, M. Tabor. Mathematical modeling of hyphal tip growth. Fungal Biol. Rev., (2008), 1–7. [Google Scholar]
  19. J.L. Hall, L.E. Williams. Transition metal transporters in plants. J. Exp. Bot., 54 (2003), 2601–2613. [CrossRef] [PubMed] [Google Scholar]
  20. M.G. Heisler, H. Jönsson. Modelling meristem development in plants. Curr. Opin. Plant Biol., 10 (2007), 92–97. [CrossRef] [PubMed] [Google Scholar]
  21. A. Hodge. Root decisions. Plant Cell Environ., 32 (2009), 628–640. [CrossRef] [PubMed] [Google Scholar]
  22. T.H. van den Honert. Water transport in plants as a catenary process. Discuss. Faraday Soc., 3 (1948), 146–153. [CrossRef] [Google Scholar]
  23. R. Huang, A.A. Becker, I.A. Jones. Modelling cell wall growth using a fibre-reinforced hyperelastic-viscoplastic constitutive law. J. Mech. Phys. Sol., 60 (2012), 750–783. [CrossRef] [Google Scholar]
  24. H. Jönsson, M.G. Heisler, B.E. Shapiro, E.M. Meyerowitz, Mjolsness E. An auxin-driven polarized transport model for phyllotaxis. P. Nat. Acad. Sci. USA, 103 (2006), 1633–1638. [CrossRef] [PubMed] [Google Scholar]
  25. R.W. Korn. A stochastic approach to the development of Coleocheate. J. Theor. Biol., 24 (1969), 147–158. [CrossRef] [PubMed] [Google Scholar]
  26. J.H. Kroeger, R. Zerzour, A. Geitman. Regulator or Driving Force? The Role of Turgor Pressure in Oscillatory Plant Cell Growth. PLoS One, 6 (2011), e18549. [CrossRef] [PubMed] [Google Scholar]
  27. J.A. Lockhart. An analysis of irreversible plant cell elongation. J. Theor. Biol., 8 (1965), 264–275. [CrossRef] [PubMed] [Google Scholar]
  28. P. Nobel. Physicochemical & Environmental Plant Physiology. Academic Press, 1999. [Google Scholar]
  29. E.S. Pierson, D.D. Miller, D.A. Callaham, J. van Aken, G. Hackett, P.K. Hepler. Tip-Localized Calcium Entry Fluctuates during Pollen Tube Growth. Dev. Biol., 174 (1996), 160–173. [CrossRef] [PubMed] [Google Scholar]
  30. P. Prusinkiewicz, A. Lindenmayer. The Algorithmic Beauty of Plants. Springer, 1991. [Google Scholar]
  31. J.M. Rohwer. Kinetic modelling of plant metabolic pathways. J. Exp. Bot., 63 (2012), 2275–2292. [CrossRef] [PubMed] [Google Scholar]
  32. E.R. Rojas, S. Hotton, J. Dumais. Chemically Mediated Mechanical Expansion of the Pollen Tube Cell Wall. Biophys. J., 101 (2011), 1844–1853. [CrossRef] [PubMed] [Google Scholar]
  33. T. Roose, A. Schnepf. Mathematical models of plant-soil interaction. Phil. Trans. Royal Soc. A, 366 (2008), 4597–4611. [CrossRef] [MathSciNet] [Google Scholar]
  34. T.J. Rudge, P.J. Steiner, A. Phillips, J. Haseloff. Computational modeling of synthetic microbial biofilms. ACS Synth. Biol., 1 (2012), 345–352. [CrossRef] [PubMed] [Google Scholar]
  35. M.T. Tyree. The Cohension-Tension theory of sap ascent: current controversies. J. Exp. Bot., 48 (1997), 1753–1765. [Google Scholar]
  36. B.A. Veytsman, D.J. Cosgrove. A Model of Cell Wall Expansion Based on Thermodynamics of Polymer Networks. Biophys. J., 75 (1998), 2240–2250. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.