Free Access
Editorial
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 4, 2013
Plant growth modelling
Page(s) 1 - 4
DOI https://doi.org/10.1051/mmnp/20138401
Published online 10 July 2013
  1. B. Basso, J.T. Ritchie, F.J. Pierce, R.P. Braga, J.W. Jones. Spatial validation of crop models for precision agriculture. Agr. Syst., 68 (2001), 97–112. [CrossRef]
  2. L.K. Brown, T.S. George, L.X. Dupuy, P.J. White. A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Ann. Bot., (2012), 1–14.
  3. V. Brukhin, N. Morozova. Plant growth and development – Basic knowledge and current views. Math. Model. Nat. Phenom., 6 (2011), 1–53. [CrossRef] [EDP Sciences]
  4. M.A.J. Chaplain. The Strain Energy Function of an Ideal Plant Cell Wall. J. Theor. Biol., 163 (1993), 77–97. [CrossRef]
  5. A. Chavarría-Krauser, D. Yejie. A model of plasma membrane flow and cytosis regulation in growing pollen tubes. J. Theor. Biol., 285 (2011), 10–24. [CrossRef] [PubMed]
  6. Y. Chebli, A. Geitmann. Mechanical principles governing pollen tube growth. Func. Plant Sci. Biotech., 1 (2007), 232–245.
  7. M. Chelle. Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for?. New Phytol., 166 (2005), 781–790. [CrossRef] [PubMed]
  8. Y. H. Chew, A.M. Wilczek, M. Williams, S.M. Welch, J. Schmitt, K.J. Halliday. An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. New Phytol., 194 (2012), 654–665. [CrossRef] [PubMed]
  9. X. Draye, Y. Kim, G. Lobet, M. Javaux. Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. J. Exp. Bot. 61 (2010), 2145–2155. [CrossRef] [PubMed]
  10. L.X. Dupuy, J. Mackenzie, J. Haseloff. Regulation of plant cell division in a simple morphogenetic system. P. Natl. Acad. Sci. USA, 107 (2010), 2711–2716. [CrossRef]
  11. R.J. Dyson, O.E. Jensen. A fibre-reinforced fluid model of anisotropic plant cell growth. J. Fluid Mech., 655 (2010), 474–503. [CrossRef]
  12. M.A. El-Sharkawy. Overview: early history of crop growth and photosynthesis modeling. BioSystems, 103 (2011), 205–211. [CrossRef] [PubMed]
  13. B.G. Forde, P.I.A. Walch-Liu. Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ., 32 (2009), 682–693. [CrossRef] [PubMed]
  14. T. Fourcaud, X. Zhang, A. Stokes, H. Lambers, C. Körner Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models. Ann. Bot., 101 (2008), 1053–1063. [CrossRef] [PubMed]
  15. A. Geitmann, J.K.E. Ortega. Mechanics and modeling of plant cell growth. Trends Plant Sci., 14 (2009), 467–478. [CrossRef] [PubMed]
  16. C. Godin, H. Sinoquet. Functional-structural plant modelling. New Phytol., 166 (2005), 705–708. [CrossRef] [PubMed]
  17. A. Goriely, D.E. Moulton, R. Vandiver. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues. EPL-EuroPhys. Lett., 91 (2010), 18001. [CrossRef] [EDP Sciences]
  18. A. Goriely, M. Tabor. Mathematical modeling of hyphal tip growth. Fungal Biol. Rev., (2008), 1–7.
  19. J.L. Hall, L.E. Williams. Transition metal transporters in plants. J. Exp. Bot., 54 (2003), 2601–2613. [CrossRef] [PubMed]
  20. M.G. Heisler, H. Jönsson. Modelling meristem development in plants. Curr. Opin. Plant Biol., 10 (2007), 92–97. [CrossRef] [PubMed]
  21. A. Hodge. Root decisions. Plant Cell Environ., 32 (2009), 628–640. [CrossRef] [PubMed]
  22. T.H. van den Honert. Water transport in plants as a catenary process. Discuss. Faraday Soc., 3 (1948), 146–153. [CrossRef]
  23. R. Huang, A.A. Becker, I.A. Jones. Modelling cell wall growth using a fibre-reinforced hyperelastic-viscoplastic constitutive law. J. Mech. Phys. Sol., 60 (2012), 750–783. [CrossRef]
  24. H. Jönsson, M.G. Heisler, B.E. Shapiro, E.M. Meyerowitz, Mjolsness E. An auxin-driven polarized transport model for phyllotaxis. P. Nat. Acad. Sci. USA, 103 (2006), 1633–1638. [CrossRef] [PubMed]
  25. R.W. Korn. A stochastic approach to the development of Coleocheate. J. Theor. Biol., 24 (1969), 147–158. [CrossRef] [PubMed]
  26. J.H. Kroeger, R. Zerzour, A. Geitman. Regulator or Driving Force? The Role of Turgor Pressure in Oscillatory Plant Cell Growth. PLoS One, 6 (2011), e18549. [CrossRef] [PubMed]
  27. J.A. Lockhart. An analysis of irreversible plant cell elongation. J. Theor. Biol., 8 (1965), 264–275. [CrossRef] [PubMed]
  28. P. Nobel. Physicochemical & Environmental Plant Physiology. Academic Press, 1999.
  29. E.S. Pierson, D.D. Miller, D.A. Callaham, J. van Aken, G. Hackett, P.K. Hepler. Tip-Localized Calcium Entry Fluctuates during Pollen Tube Growth. Dev. Biol., 174 (1996), 160–173. [CrossRef] [PubMed]
  30. P. Prusinkiewicz, A. Lindenmayer. The Algorithmic Beauty of Plants. Springer, 1991.
  31. J.M. Rohwer. Kinetic modelling of plant metabolic pathways. J. Exp. Bot., 63 (2012), 2275–2292. [CrossRef] [PubMed]
  32. E.R. Rojas, S. Hotton, J. Dumais. Chemically Mediated Mechanical Expansion of the Pollen Tube Cell Wall. Biophys. J., 101 (2011), 1844–1853. [CrossRef] [PubMed]
  33. T. Roose, A. Schnepf. Mathematical models of plant-soil interaction. Phil. Trans. Royal Soc. A, 366 (2008), 4597–4611. [CrossRef] [MathSciNet]
  34. T.J. Rudge, P.J. Steiner, A. Phillips, J. Haseloff. Computational modeling of synthetic microbial biofilms. ACS Synth. Biol., 1 (2012), 345–352. [CrossRef] [PubMed]
  35. M.T. Tyree. The Cohension-Tension theory of sap ascent: current controversies. J. Exp. Bot., 48 (1997), 1753–1765.
  36. B.A. Veytsman, D.J. Cosgrove. A Model of Cell Wall Expansion Based on Thermodynamics of Polymer Networks. Biophys. J., 75 (1998), 2240–2250. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.