Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 4, 2013
Plant growth modelling
Page(s) 5 - 24
DOI https://doi.org/10.1051/mmnp/20138402
Published online 10 July 2013
  1. R. Albert, A.L. Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74 (2002), 47. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  2. U. Alon. An introduction to systems biology: design principles of biological circuits. Boca Raton: Chapman & Hall/CRC, 2007. [Google Scholar]
  3. U. Alon. Network motifs: theory and experimental approaches. Nat. Rev. Genet., 8 (2007), 450–461. [Google Scholar]
  4. A. Arkin, J. Ross, H.H. McAdams. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 149 (1998), 4:1633–48. [PubMed] [Google Scholar]
  5. L.R. Band, S. Ubeda-Tomas, R.J. Dyson, A.M. Middleton, T.C. Hodgman, M.R. Owen, O.E. Jensen, M.J. Bennett, J.R. King. Growth-induced hormone dilution can explain the dynamics of plant root cell elongation. Published online before print PNAS (2012), doi: 10.1073/pnas.1113632109. [Google Scholar]
  6. M. Bansal, D. di Bernardo. Inference of gene networks from temporal gene expression profiles. IET Syst. Biol., 1 (2007), (5), 306–312. [CrossRef] [PubMed] [Google Scholar]
  7. A.L. Barabási, E. Bonabeau. Scale-Free Networks. Scientific American 288 (2003), 60–69. [Google Scholar]
  8. A.F. Bartholomay. Stochastic models for chemical reactions: I. Theory of the unimolecular reaction process. Bull. Math. Biophysics, 20 (1958), 175–90. [CrossRef] [Google Scholar]
  9. A.F. Bartholomay. Stochastic models for chemical reactions: II. The unimolecular rate constant. Bull. Math. Bio., 21 (1959), 4:363–373. [CrossRef] [Google Scholar]
  10. G. Batt, M. Page, I. Cantone, G. Goessler, P. Monteiro, H. de Jong. Efficient parameter search for qualitative models of regulatory networks using symbolic model checking. Bioinformatics, 26 (2010), 18: i603–i610. [CrossRef] [PubMed] [Google Scholar]
  11. M.J. Beal, F. Falciani, Z. Ghahramani, C. Rangel, D.L. Wild. A Bayesian Approach to Reconstructing Genetic Regulatory Networks with Hidden Factors. Bioinformatics, 21 (2005), 349–356. [CrossRef] [PubMed] [Google Scholar]
  12. K. Bleakley, G. Biau, J.P. Vert. Supervised Reconstruction of Biological Networks with Local Models. Bioinformatics, 1 (2007), 23(13):i57–65. [Google Scholar]
  13. I. Blilou, J. Xu, M. Wildwater, V. Willemsen, I. Paponov, J. Friml, R. Heidstra, M. Aida, K. Palme, B. Scheres. The PIN auxin efflux facilitator controls growth and patterning in Arabidopsis roots. Nature, 433 (2005), 39–44. [CrossRef] [PubMed] [Google Scholar]
  14. H.L.D. de S. Cavalcante, D.J. Gauthier, J.E.S. Socolar, R. Zhang. On the origin of chaos in autonomous Boolean networks. Phil. Trans. R. Soc. A, 28 (2010), 368(1911):495–513. [Google Scholar]
  15. V. Chandrasekaran, P.A. Parrilo, A.S. Willsky. Latent Variable Graphical Model Selection via Convex Optimization. to appear in The Annals of Statistics. [Google Scholar]
  16. J. Cheng, R. Greiner, J. Kelly, D. A. Bell, W. Liu. Learning Bayesian networks from data: an information-theory based approach. Artif. Intell., 137 (2002), 43–90. [CrossRef] [Google Scholar]
  17. J. Chiquet, Y. Grandvalet, C. Ambroise. Inferring multiple graphical structures. Stat. and Comput., 21 (2011), 4, 537–553. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Chow, P. McCourt. Plant hormone receptors: perception is everything. Genes Dev., 20 (2006), 1998–2008. [CrossRef] [PubMed] [Google Scholar]
  19. F. Crick. Diffusion in embryogenesis. Nature, 225 (1970), 420–422. [CrossRef] [PubMed] [Google Scholar]
  20. D. Deamer. On the origin of systems. Systems biology, synthetic biology and the origin of life. EMBO Rep., 10(S1) (2009), S1–S4. [CrossRef] [PubMed] [Google Scholar]
  21. H. De Jong. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol., 9 (2002), 1, 67–103. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. R. Dello Ioio, K. Nakamura, L. Moubayidin, S. Perilli, M. Taniguchi, M.T. Morita, T. Aoyama, P. Costantino, S. Sabatini. A Genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem. Nature, 322 (2008), 1380–1384. [Google Scholar]
  23. I. De Smet, T. Tetsumura, B. DeRybel, N. Frei dit Frey, L. Laplaze, I. Casimiro, R. Swarup, M. Naudts, S. Vanneste, D. Audenaert, D. Inzé, M. Bennett, T. Beeckman. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development, 134 (2007), 4:681. [CrossRef] [PubMed] [Google Scholar]
  24. N. Dharmasiri, S. Dharmasiri, M. Estelle. The F-box protein TIR1 is an auxin receptor. Nature, 435 (2005), 441–445. [CrossRef] [PubMed] [Google Scholar]
  25. J. Díaz, E.R. Álvarez-Buylla. A model of the ethylene signaling pathway and its gene response in Arabidopsis thaliana: Pathway cross-talk and noise-filtering properties. Chaos, 16 (2006), 023112. [CrossRef] [PubMed] [Google Scholar]
  26. L. Dupuy, M. Vignes, B.M. McKenzie, P.J. White. The dynamics of root meristem distribution in the soil. Plant Cell Environ., 33 (2010), 3:358–69. [CrossRef] [PubMed] [Google Scholar]
  27. R. Edwards. Analysis of continuous-time switching networks. Physica D, 146 (2000), 165–199. [CrossRef] [Google Scholar]
  28. M.B. Elowitz, S. Leibler. A synthetic oscillatory network of transcriptional regulators. Nature, 403 (2000), 335–338. [CrossRef] [PubMed] [Google Scholar]
  29. C. Espinosa-Soto, P. Padilla-Longoria, E.R. Alvarez-Buylla. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell., 16 (2004), 11:2923–39. [CrossRef] [PubMed] [Google Scholar]
  30. H. Ezura, N.P. Harberd. Endogenous gibberellin levels influence in-vitro shoot regeneration in Arabidopsis thaliana (L.) Heynh. Planta, 197 (1995), 2:301–5. [CrossRef] [PubMed] [Google Scholar]
  31. N. Friedman, M. Linial, I. Nachman, D. Pe’er. Using Bayesian networks to analyze expression data. J. Comput. Biol., 7 (2000), 3-4:601–20. [CrossRef] [PubMed] [Google Scholar]
  32. N. Friedman, K. Murphy, S. Russell. Learning the structure of dynamic probabilistic networks. UAI Proc. Morgan Kaufman, 1998. [Google Scholar]
  33. N. Friedman, S. Vardi, M. Ronen, U. Alon, J. Stavans. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol., 3 (2005), e238. [CrossRef] [PubMed] [Google Scholar]
  34. H. Fujita, K. Toyokura, K. Okada, M. Kawaguchi. Reaction-Diffusion Pattern in Shoot Apical Meristem of Plants. PLoS ONE, 6 (2011), 3: e18243. doi:10.1371/journal.pone.0018243. [CrossRef] [PubMed] [Google Scholar]
  35. S. Gazzarrini, P. McCourt. Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. Ann. Bot., 91 (2003), 6:605–12. [CrossRef] [PubMed] [Google Scholar]
  36. T. Genoud, M.B. Trevino Santa Cruz, J.P. Métraux. Numeric Simulation of Plant Signaling Networks. Plant Physiol., 126 (2001), 4:1430–1437. [CrossRef] [PubMed] [Google Scholar]
  37. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81 (1977), 25, 2340–2361. [CrossRef] [Google Scholar]
  38. D.T. Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem., 58 (2007), 35–55. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  39. D.T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys., 115 (2001), 1716–1733. [CrossRef] [Google Scholar]
  40. L. Glass, S. Kauffman. The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol., 39 (1973), 103–129. [CrossRef] [PubMed] [Google Scholar]
  41. B.C. Goodwin. Oscillatory behaviour in enzymatic control processes. Adv. Enzyme Regul., 3 (1965), 425–428. [Google Scholar]
  42. S.P. Gordon, V.S. Chickarmane, C. Ohno, E.M. Meyerowitz. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. PNAS, 106 (2009), 38:16529–16534. [CrossRef] [Google Scholar]
  43. V.A. Grieneisen, J. Xu, A.F. Marée, P. Hogeweg, B. Scheres. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 449 (2007), 1008–1013. [CrossRef] [PubMed] [Google Scholar]
  44. J.S. Griffith. Mathematics of cellular control processes I. Negative feedback to one gene. J. Theor. Biol., 20 (1968), 2, 202–208. [CrossRef] [PubMed] [Google Scholar]
  45. M. Grzegorczyk, D. Husmeier. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes. Bioinformatics, 27 (2011), 5:693–699. [CrossRef] [PubMed] [Google Scholar]
  46. M.L. Guerriero, A. Pokhilko, A.P. Fernández, K.J. Halliday, A.J. Millar, J. Hillston. Stochastic properties of the plant circadian clock. J. R. Soc. Interface, 9 (2011), 1–19. [PubMed] [Google Scholar]
  47. G. Hagen, T. Guilfoyle. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol., 49 (2002), 373–385. [CrossRef] [PubMed] [Google Scholar]
  48. A.V. Hill. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol., 40 (Suppl): iv-vii. (1910-01-22), Retrieved 2009-03-18. [Google Scholar]
  49. V.A. Huynh-Thu, A. Irrthum, L. Wehenkel, P. Geurts. Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE, 5 (2010), 9: e12776. [CrossRef] [PubMed] [Google Scholar]
  50. A.D. Johnson, B.J. Meyer, M. Ptashne. Interactions between DNA-bound repressors govern regulation by the λ phage repressor. PNAS, 76 (1979), 5061–5065. [CrossRef] [Google Scholar]
  51. Y.H. Kang, V. Kirik, M. Hulskamp, K.H. Nam, K. Hagely, M.M. Lee, J. Schiefelbein. The MYB23 Gene Provides a Positive Feedback Loop for Cell Fate Specification in the Arabidopsis Root Epidermis. Plant Cell, 21 (2009), 1080–1094. [CrossRef] [PubMed] [Google Scholar]
  52. G. Karlebach, R. Shamir. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol., 9 (2008), 10: 770–80. [CrossRef] [PubMed] [Google Scholar]
  53. S. Kauffman. Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets. J. Theor. Biol., 22 (1969), 437–467. [CrossRef] [PubMed] [Google Scholar]
  54. S. Kauffman, C. Peterson, B. Samuelsson, C. Troein. Random Boolean network models and the yeast transcriptional network. PNAS, 100 (2003), 25:14796–9. [Google Scholar]
  55. S. Kepinski, O. Leyser. The arabidopsis f-box protein tir1 is an auxin receptor. Nature, 435 (2005), 436–437. [CrossRef] [PubMed] [Google Scholar]
  56. B.N. Kholodenko, A. Kiyatkin, F.J. Bruggeman, E. Sontag, H.V. Westerhoff, J.B. Hoek. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. PNAS, 99 (2002), 20:12841–12846. [CrossRef] [Google Scholar]
  57. T.R. Kiehl, R.M. Mattheyses, M.K. Simmons. Hybrid simulation of cellular behavior. Bioinformatics, 20 (2004):316–322. [CrossRef] [PubMed] [Google Scholar]
  58. E.M. Kramer, M.J. Bennett. Auxin transport: a field in flux. Trends Plant Sci., 11 (2006), 382–386. [CrossRef] [PubMed] [Google Scholar]
  59. Yu.A. Kuznetsov Elements of Applied Bifurcation Theory. Springer, 3rd edition, 2004. [Google Scholar]
  60. G. Lahav, N. Rosenfeld, A. Sigal, N. Geva-Zatorsky, A.J. Levine, M.B. Elowitz, U. Alon. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature Genet., 36 (2004), 147–150. [Google Scholar]
  61. L. Laplaze, E. Benkova, I. Casimiro, L. Maes, S. Vanneste, R. Swarup, D. Weijers, V. Calvo, B. Parizot, M. Begoña Herrera-Rodriguez, R. Offringa, N. Graham, P. Doumas, J. Friml, D. Bogusz, T. Beeckman, M. Bennett. Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation. Plant Cell, 19 (2007), 3889–3900. [CrossRef] [PubMed] [Google Scholar]
  62. S. Lèbre, J. Becq, F. Devaux, M.P.H. Stumpf, G. Lelandais. Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst. Biol., 4 (2010), 130. [CrossRef] [PubMed] [Google Scholar]
  63. S.H. Lee, D.M. Reid. The role of endogenous ethylene in the expansion of Helianthus annuus leaves. Can. J. Bot., 75 (1997), 3:501–8. [CrossRef] [PubMed] [Google Scholar]
  64. P. Li, C. Zhang, E.J. Perkins, P. Gong, Y. Deng. Comparison of probabilistic Boolean network and dynamic Bayesian approaches for inferring gene regulatory networks. BMC Bioinformatics, 8 (2007) Suppl 7: S13. [CrossRef] [Google Scholar]
  65. S. Liang, S. Fuhrman, R. Somogyi. REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. PSB, 3 (1998), 18–29. [Google Scholar]
  66. J. Liu, S. Mehdi, J. Topping, P. Tarkowski, K. Lindsey. Modelling and experimental analysis of hormonal crosstalk in Arabidopsis. Mol. Syst. Biol., 6 (2010), Article number: 373. [PubMed] [Google Scholar]
  67. J.C.W. Locke, L. Kozma-Bognár, P.D. Gould, B. Feheŕ, E. Kevei, F. Nagy, M.S. Turner, A. Hall, A.J. Millar. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol. Syst. Biol., 2 (2006), 59. [PubMed] [Google Scholar]
  68. A. Madar, A. Greenfield, E. Vanden-Eijnden, R. Bonneau. DREAM3: Network Inference Using Dynamic Context Likelihood of Relatedness and the Inferelator. PLoS ONE, 5 (2010), 3. [CrossRef] [Google Scholar]
  69. D. Marbach, R.J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, G. Stolovitzky. Revealing strengths and weaknesses of methods for gene network inference. PNAS, 107 (2010), 14 6286–6291. [CrossRef] [Google Scholar]
  70. D. Marbach, J. Costello, R. K"uffner, N. Vega, R. Prill, D. Camacho, K. Allison, The DREAM5 Consortium, M. Kellis, J. Collins, G. Stolovitzky. Wisdom of crowds for robust gene network inference. Nature Methods, 9 (2012), 8: 796–804. [Google Scholar]
  71. A.A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Dalla Favera, A. Califano. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 20 (2006), 7 Suppl 1:S7. [CrossRef] [Google Scholar]
  72. H. Meinhardt. A model for pattern formation in insect embryogenesis. J. Cell Sci., 23 (1977), 117–139. [Google Scholar]
  73. A.M. Middleton, J.R. King, M.J. Bennett, M.R. Owen. Mathematical modelling of the Aux/IAA negative feedback loop. B. Math. Biol., 72 (2010), 1383–1407. [CrossRef] [Google Scholar]
  74. A.M. Middleton, S. Úbeda-Tomás, J. Griffiths, T. Holman, P. Hedden, S.G. Thomas, A.L. Phillips, M.J. Holdsworth, M.J. Bennett, J.R. King, M.R. Owen. Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Published online before print PNAS, April 20, 2012, doi: 10.1073/pnas.1113666109. [Google Scholar]
  75. M.A. Moreno-Risueno, J.M. Van Norman, A. Moreno, J. Zhang, S.E. Ahnert, P.N. Benfey. Oscillating Gene Expression Determines Competence for Periodic Arabidopsis Root Branching. Science, 329 (2010), 1306. [CrossRef] [PubMed] [Google Scholar]
  76. L. Moubayidin, R. Di Mambro, S. Sabatini. Cytokinin-auxin crosstalk. Trends Plant Sci., 14 (2009), 10: 557–562. [CrossRef] [PubMed] [Google Scholar]
  77. L. Moubayidin, S. Perilli, R. Dello Ioio, R. Di Mambro, P. Costantino, S. Sabatini. The Rate of Cell Differentiation Controls the Arabidopsis Root Meristem Growth Phase. Curr. Biol., 20 (2010), 1138–1143. [CrossRef] [PubMed] [Google Scholar]
  78. D. Muraro, H. Byrne, J. King, U. Voß, J. Kieber, M. Bennett. The influence of cytokinin-auxin cross-regulation on cell-fate determination in Arabidopsis thaliana root development. J. Theor. Biol., 283 (2011), 152–167. [CrossRef] [PubMed] [Google Scholar]
  79. K. Murphy, S. Mian. Modelling gene expression data using dynamic Bayesian networks. Technical Report, University of California, Berkeley, 1999. [Google Scholar]
  80. C.J. Needham, I.W. Manfield, A.J. Bulpitt, P.M. Gilmartin, D.R. Westhead. From gene expression to gene regulatory networks in Arabidopsis thaliana. BMC Syst. Biol., 3 (2009), 85. [CrossRef] [PubMed] [Google Scholar]
  81. J.B. Passioura, S.C. Fry. Turgor and Cell Expansion: Beyond the Lockhart Equation. Aust. J. Plant Physiol., 19 (1992), 5, 565–576. [CrossRef] [Google Scholar]
  82. J. Paulsson. Models of stochastic gene expression. Phys. Life Rev., 2 (2005), 157–175. [CrossRef] [Google Scholar]
  83. C.A. Penfold, D.L. Wild. How to infer gene networks from expression profiles, revisited. Interface Focus, 1 (2011), 1, 857–870. [CrossRef] [PubMed] [Google Scholar]
  84. H. Rabitz, M. Kramer, D. Dacol. Sensitivity analysis in chemical kinetics. Annu. Rev. Phys. Chem., 34 (1983), 419–461. [Google Scholar]
  85. A. Rau, F. Jaffrézic, J.L. Foulley, R.W. Doerge. An empirical Bayesian method for estimating biological networks from temporal microarray data. Stat. Appl. Genet. Mol. Biol., 9 (2010), 1, Article 9. [Google Scholar]
  86. J. Rice, Y. Tu, G. Stolovitzky. Reconstructing biological networks using conditional correlation analysis. Bioinformatics, 21 (2005), 6: 765–773. [CrossRef] [PubMed] [Google Scholar]
  87. N. Rosenfeld, M.B. Elowitz, U. Alon. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol., 323 (2002), 5:785–93. [CrossRef] [PubMed] [Google Scholar]
  88. K. Ruzicka, M. Simaskova, J. Duclercq, J. Petrasek, E. Zazimalova, S. Simon, J. Friml, M.C.E. Van Montagu, E. Benkova. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. PNAS, 106 (2009), 11, 4284–4289. [CrossRef] [Google Scholar]
  89. L.A. Saddic, B. Huvermann, S. Bezhani, Y. Su, C.M. Winter, C.S. Kwon, R.P. Collum, D. Wagner. The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development, 133 (2006), 1673–1682. [CrossRef] [PubMed] [Google Scholar]
  90. I. Shmulevich, E. R. Dougherty. Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks. SIAM Press, 2009. [Google Scholar]
  91. I. Shmulevich, E.R. Dougherty, S. Kim, W. Zhang. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18 (2002), 261–274. [CrossRef] [PubMed] [Google Scholar]
  92. F. Skoog, C.O. Miller. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Syrup. Soc. Exp. Biol., 54 (1957), 118–130. [Google Scholar]
  93. A.N. Stepanova, J. Yun, A.V. Likhacheva, J.M. Alonso. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell., 7 (2007), 2169-85. Epub 2007 Jul 13. [CrossRef] [Google Scholar]
  94. T.P. Sun, F. Gubler. Molecular Mechanism of Gibberellin Signaling in Plants. Annu. Rev. Plant Biol., 55 (2004), 197–223. [CrossRef] [PubMed] [Google Scholar]
  95. R. Swarup, P. Perry, D. Hagenbeek, D. Van Der Straeten, G.T.S. Beemster, G. Sandberg, R. Bhalerao, K. Ljung, M.J. Bennett. Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation. Plant Cell, 19 (2007), 2186–2196. [CrossRef] [PubMed] [Google Scholar]
  96. L. Taiz, E. Zeiger. Plant Physiology, Fifth Edition. Sinauer Associates Inc., Publishers, Sunderland, Massachussets U.S.A., 2010. [Google Scholar]
  97. R. Thomas. Boolean formalization of genetic control circuits. J. Theor. Biol., 42 (1973), 563–585. [CrossRef] [PubMed] [Google Scholar]
  98. R. Thomas, R. D’Ari. Biological Feedback. CRC-Press, Boca Raton, Florida, 1990. [Google Scholar]
  99. Q. Tian, N.J. Uhlir, J.W. Reed. Arabidopsis SHY2/IAA3 Inhibits Auxin-Regulated Gene Expression. Plant Cell, 14 (2002), 301–319. [CrossRef] [PubMed] [Google Scholar]
  100. S.B. Tiwari, G. Hagan, T. Guilfoyle. The roles of Auxin response factor domains in Auxin-responsive transcription. Plant Cell, 15 (2003), 533–543. [CrossRef] [PubMed] [Google Scholar]
  101. K. Tsuda, Y. Ito, Y. Sato, N. Kurata. Positive Autoregulation of a KNOX Gene Is Essential for Shoot Apical Meristem Maintenance in Rice. Plant Cell, 23 (2011): 4368–4381. [CrossRef] [PubMed] [Google Scholar]
  102. A.M. Turing. The chemical basis of morphogenesis. Philos. Trans. R. Soc. London B, 237 (1952), 37–72. [Google Scholar]
  103. J.J. Tyson. On the existence of oscillatory solutions in negative feedback cellular control processes. J. Math. Biol., 1 (1975), 4, 311–315. [CrossRef] [Google Scholar]
  104. S. Úbeda-Tomás, G. Beemster, M. Bennett. Hormonal regulation of root growth: integrating local activities into global behaviour. Trends Plant Sci., 17 (2012), 6, 326–331. [CrossRef] [PubMed] [Google Scholar]
  105. M. Ueguchi-Tanaka, M. Ashikari, M. Nakajima, H. Itoh, E. Katoh, M. Kobayashi, T.Y. Chow, Y.I. Hsing, H. Kitano, I. Yamaguchi, M. Matsuoka. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 437 (2005), 693–698. [CrossRef] [PubMed] [Google Scholar]
  106. M. Ueguchi-Tanaka, M. Nakajima, E. Katoh, H. Ohmiya, K. Asano, S. Saji, X. Hongyu, M. Ashikari, H. Kitano, I. Yamaguchi, M. Matsuoka. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 19 (2007), 2140–2155. [CrossRef] [PubMed] [Google Scholar]
  107. T. Ulmasov, G. Hagen, T.J. Guilfoyle. Dimerization and DNA binding of auxin response factors. Plant J., 19 (1999), 309–319. [CrossRef] [PubMed] [Google Scholar]
  108. M. Vignes, J. Vandel, D. Allouche, N. Ramadan-Alban, C. Cierco-Ayrolles, T. Schiex, B. Mangin, S. de-Givry. Gene Regulatory Network Reconstruction Using Bayesian Networks, the Dantzig Selector, the Lasso and Their Meta-Analysis. PLoS ONE, 6 (2011), 12: e29165. [CrossRef] [PubMed] [Google Scholar]
  109. J.P. Vogel, K.E. Woeste, A. Theologis, J.J. Kieber. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. PNAS, 95 (1998), 8:4766–71. [CrossRef] [Google Scholar]
  110. J. Watkinson, K. Liang, X. Wang, T. Zheng, D. Anastassiou. Inference of Regulatory Gene Interactions from Expression Data Using Three-Way Mutual Information. Ann. N. Y. Acad. Sci., 1158 (2009), 302–13. [CrossRef] [PubMed] [Google Scholar]
  111. D. Watts, S. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393 (1998), 6684: 440–442. [CrossRef] [PubMed] [Google Scholar]
  112. A.V. Werhli, M. Grzegorczyk, D. Husmeier. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics, 22 (2006), 20: 2523–2531. [CrossRef] [PubMed] [Google Scholar]
  113. A.V. Werhli, D. Husmeier. Gene Regulatory Network Reconstruction by Bayesian Integration of Prior Knowledge and/or Different Experimental Conditions. J. Bioinform. Comput. Biol., 6 (2008), 3: 543–72. [CrossRef] [PubMed] [Google Scholar]
  114. N. Wermuth, S. Lauritzen. Graphical and recursive models for contingence tables. Biometrika, 72 (1983), 537–552. [CrossRef] [Google Scholar]
  115. B.C. Willige, S. Ghosh, C. Nill, M. Zourelidou, E.M. Dohmann, A. Maier, C. Schwechheimer. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1. A gibberellin receptor of Arabidopsis. Plant Cell, 19 (2007), 1209–1220. [CrossRef] [PubMed] [Google Scholar]
  116. L. Wolpert. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol., 25 (1999), 1–47. [CrossRef] [PubMed] [Google Scholar]
  117. K.Y. Yip, R.P. Alexander, K.K. Yan, M. Gerstein. Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data. PLoS ONE, 5 (2010), 1. [Google Scholar]
  118. T.T. Vu, J. Vohradsky. Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic Acids Res., 35 (2006), 1, 279–287. [CrossRef] [PubMed] [Google Scholar]
  119. M. Zou, S.D. Conzen. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21 (2005), 1. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.