Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 4, 2013
Plant growth modelling
Page(s) 25 - 34
DOI https://doi.org/10.1051/mmnp/20138403
Published online 10 July 2013
  1. F. Bou Daher, A. Geitmann. Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic, 12 (2011), 1537–1551. [CrossRef] [PubMed] [Google Scholar]
  2. A. Chavarría-Krauser, D. Yejie. A model of plasma membrane flow and cytosis regulation in growing pollen tubes. J. of Theor. Biol., 285 (2011), 10–24. [Google Scholar]
  3. Y. Chebli, A. Geitmann. Mechanical principles governing pollen tube growth. Functional Plant Science and Biotechnology, 1 (2007), 232–245. [Google Scholar]
  4. J. Dumais, S.R. Long, S.L. Shaw. The mechanics of surface expansion anisotropy in Medicago truncatula root hairs. Plant Physiology, 136 (2004), 3266–3275. [CrossRef] [PubMed] [Google Scholar]
  5. J. Dumais, S.L. Shaw, C.R. Steele, S.R. Long, P.M. Ray. An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. International Journal of Developmental Biology, 50 (2006), 209–222. [Google Scholar]
  6. R. Dutta, K.R. Robinson. Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol., 135 (2004), 1398–1406. [CrossRef] [PubMed] [Google Scholar]
  7. E. Eggen, M.N. de Keijser, B.M. Mulder. Self-regulation in tip-growth: The role of cell wall aging. Journal of Theoretical Biology, 283 (2011), 113–121. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. P. Fayant, O. Girlanda, Y. Chebli, C.E. Aubin, I. Villemure, A. Geitmann. Finite element model of polar growth in pollen tubes. Plant Cell, 22 (2010), 2579–2593. [CrossRef] [PubMed] [Google Scholar]
  9. A. Fleischer, C. Titel, R. Ehwald. The boron requirement and cell wall properties of growing and stationary suspensioncultured Chenopidium album L. cells. Plant Physiology, 117 (1998), 1401–1410. [CrossRef] [PubMed] [Google Scholar]
  10. A. Fleischer, M.A. O’Neill, R. Ehwald. The pore size of nongraminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology, 121 (1999), 829–838. [CrossRef] [PubMed] [Google Scholar]
  11. A. Geitmann, M.W. Steer. The architecture and properties of the pollen tube cell wall. In: R. Malhó (Ed) The Pollen Tube: A Cellular and Molecular. Perspective, Plant Cell Monographs, Springer Verlag, Berlin, 2006. [Google Scholar]
  12. A.E. Hill, B. Shachar-Hill, J.N. Skepper, J. Powell, Y. Shachar-Hill. An osmotic model of the growing pollen tube. PLoS One, 7 (2012), e36585. [CrossRef] [PubMed] [Google Scholar]
  13. T. L. Holdaway-Clarke, N. M. Weddle, S. Kim, A. Robi, C. Parris, J. G. Kunkel, P. K. Hepler. Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. Journal of Experimental Botany, 54 (2003), 65–72. [CrossRef] [PubMed] [Google Scholar]
  14. T. L. Holdaway-Clarke, P.K. Hepler. Tansley Review. Control of pollen tube growth: role of ion gradients and fluxes. New Phytologist 159 (2003). 539–563. [CrossRef] [Google Scholar]
  15. T. Ishii, T. Matsunaga, N. Hayashi. Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue. Plant Physiology, 126 (2001), 1698–1705. [CrossRef] [PubMed] [Google Scholar]
  16. H. Li, Y. Lin, R.M. Heath, M.X. Zhu, Z. Yang. Control of pollen tube growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell, 11 (1999), 1731–1742. [PubMed] [Google Scholar]
  17. J.A. Lockhart. An analysis of irreversible plant cell elongation. Journal of Theoretical Biology, 8 (1965), 264–275. [Google Scholar]
  18. J. H. Kroeger, R. Zerzour, A. Geitmann. Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS One, 6 (2011), e18549. [CrossRef] [PubMed] [Google Scholar]
  19. J. H. Kroeger, F. Bou Daher, M. Grant, A. Geitmann. Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophysical Journal, 97 (2009), 1822–1831. [CrossRef] [PubMed] [Google Scholar]
  20. J.H. Kroeger, A. Geitmann, M. Grant. Model for calcium dependent oscillatory growth in pollen tubes. Journal of Theoretical Biology, 253 (2008), 363–374. [CrossRef] [PubMed] [Google Scholar]
  21. J.H. Kroeger, A. Geitmann. Pollen tube growth: Getting a grip on cell biology through modeling. Mechanical Research Communications, 42 (2012), 32–39. [CrossRef] [Google Scholar]
  22. M. Leoni, T. B. Liverpool. Hydrodynamic synchronisation of non-linear oscillators at low Reynolds number. Phys. Rev. E 85 (2012). 040901. [CrossRef] [Google Scholar]
  23. J. Liu, B.M.A.G. Piette, M.J. Deeks, V. E. Franklin-Tong, P.J. Hussey. A compartmental model analysis of integrative and self-regulatory ion dynamics in pollen tube growth. PLoS One, 5 (2010), e13157. [CrossRef] [PubMed] [Google Scholar]
  24. T. Matoh, M. Kobayashi. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. Journal of Plant Research, 111 (1998), 179–190. [CrossRef] [Google Scholar]
  25. S.T. McKenna, J.G. Kunkel, M.B., C.M. Rounds, L. Vidali, L.J. Winship, P.K. Hepler Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell, 21 (2009), 3026–3040. [CrossRef] [PubMed] [Google Scholar]
  26. J.K.E. Ortega. Governing equations for plant cell growth. Physiologia Plantarum, 79 (1990), 116–121. [CrossRef] [Google Scholar]
  27. B.L. Ridley, M.A. O’Neill, D.A. Mohnen. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57 (2001), 929–967. [CrossRef] [PubMed] [Google Scholar]
  28. J. Rinzel. Bursting oscillations in an excitable membrane model, in ordinary and partial differential equations. In: Sleeman BD, Jarvis RJ, editors. Lecture Notes in Mathematics. (1985) New York: Springer. pp. 304–316. [Google Scholar]
  29. E. Rojas, S. Hotton, J. Dumais. Chemically mediated mechanical expansion of the pollen tube cell wall. Biophysical Journal, 101 (2011), 1844–1853. [Google Scholar]
  30. S.J. Roy, T.L. Holdaway-Clarke, G.R. Hackett, J.G. Kunkel, E.M. Lord, P.K. Helpler. Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. The Plant Journal 19 (1999), 379–386. [CrossRef] [Google Scholar]
  31. G. Ullah, P. Jung, A. Cornell-Bell. Antiphase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium, 39 (2006) 197208. [CrossRef] [Google Scholar]
  32. L.J. Winship, G. Obermeyer, A. Geitmann, PK. Hepler. 2010. Under pressure, cell walls set the pace. Trends in Plant Science 15: 363–369. [CrossRef] [PubMed] [Google Scholar]
  33. A. Yan, G. Xu, Z.-B. Yang. Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. P.N.A.S., 106 (2009), 22002–22007. [CrossRef] [Google Scholar]
  34. R. Zerzour, J.H. Kroeger, A. Geitmann. Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev. Biol., 334 (2009) 437–446. [CrossRef] [PubMed] [Google Scholar]
  35. L. Zonia, T. Munnik. Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci., 14 (2009), 318-327. [CrossRef] [PubMed] [Google Scholar]
  36. L. Zonia, T. Munnik. Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. Journal of Experimental Botany, 59 (2008), 861–873. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.