Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 4, 2013
Plant growth modelling
Page(s) 35 - 61
Published online 10 July 2013
  1. C.N. Ahlquist, R.I. Gamow. Phycomyces mechanical behavior of stage II and stage IV. Plant Physiol., 51 (1973), 586–587. [CrossRef] [PubMed] [Google Scholar]
  2. D. Ambrosi, G.A. Ateshian, E.M. Arruda, S.C. Cowin, J. Dumais, A. Goriely, G.A. Holzapfel, J.D. Humphrey, R. Kemkemer, E. Kuhl, J.E. Olberding, L.A. Taber, K. Garikipati. Perspectives on biological growth and remodeling. J Mech. Phys. Solids, 59 (2011), 863–883. [Google Scholar]
  3. S. Bartnicki-Garcia, C.E. Bracker, G. Glerz, R. Lopez-Franco, H. Lu. Mapping the growth of fungal hyphae orthogonal cell wall expansion during tip growth and the role of turgor. Biophys J., 79 (2000) 2382–2390. [CrossRef] [PubMed] [Google Scholar]
  4. T.I. Baskin. Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol, 21 (2005), 203–222. [CrossRef] [PubMed] [Google Scholar]
  5. E.C. Bingham. Fluidity and Plasticity. McGraw-Hill, New York, 1922. [Google Scholar]
  6. J. Bove, B. Vaillancourt, J. Kroeger, P.K. Hepler, P.W. Wiseman, A. Geitmann. Magnitude and Direction of Vesicle Dynamics in Growing Pollen Tubes Using Spatiotemporal Image Correlation Spectroscopy and Fluorescence Recovery after Photobleaching. Plant Physiol., 147 (2008), 1646–1658. [CrossRef] [PubMed] [Google Scholar]
  7. J.S. Boyer. Cell wall biosynthesis and the molecular mechanism of plant enlargement. Funct. Plant Biol., 36 (2009), 383–394. [CrossRef] [Google Scholar]
  8. O. Campas, L. Mahadevan. Shape and dynamics of tip-growing cells. Current Biol., 19 (2009), 2102–2107. [CrossRef] [PubMed] [Google Scholar]
  9. N.C. Carpita, D.M. Gibeaut. Structural models of primary cell wall in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J., 3 (1993), 1–30. [CrossRef] [PubMed] [Google Scholar]
  10. E.S. Castle. Spiral growth and the reversal of spiraling in Phycomyces, and their bearing on primary wall structure. Am J Botany, 29 (1942), 664–672. [CrossRef] [Google Scholar]
  11. M.A.J. Chaplain. The strain energy function of an ideal plant cell wall. J Theor. Biol., 163 (1993), 77–97. [Google Scholar]
  12. Y. Chebli, A. Geitmann. Mechanical principles governing pollen tube growth. Funct. Plant Sci Biotech., 1 (2007), 232–245. [Google Scholar]
  13. E. Cerda-Olmedo, E.D. Lipson. Phycomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1987. [Google Scholar]
  14. D.J. Cosgrove. Cell wall yield properties of growing tissue evaluation by in vivo stress relaxation. Plant Physiol., 78 (1985), 347–356. [CrossRef] [PubMed] [Google Scholar]
  15. D.J. Cosgrove. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques. Planta, 171 (1987), 266–278. [CrossRef] [PubMed] [Google Scholar]
  16. D.J. Cosgrove. Assembly and enlargement of the primary cell wall in plants. Annu. Rev. Cell Dev. Biol., 13 (1997), 171–201. [CrossRef] [PubMed] [Google Scholar]
  17. D.J. Cosgrove. Loosening of plant cell walls by expansions. Nature, 407 (2000), 321–326. [CrossRef] [PubMed] [Google Scholar]
  18. D.J. Cosgrove. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol., 6 (2005), 850–861 (doi:10.1038/nrm1746). [Google Scholar]
  19. J. Dumais, S.L. Shaw, C.R. Steele, S.R. Long, P.M. Ray. An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int. J Dev. Biol., 50 (2006), 209–222. [Google Scholar]
  20. R.J. Dyson, O.E. Jensen. A fibre-reinforced fluid model of anisotropic plant cell growth. J Fluid Mech., 655 (2010), 472–503. [Google Scholar]
  21. R.J. Dyson, L.R. Band, O.E. Jensen. A model of cross-link kinetics in the expanding plant cell wall: Yield stress and enzyme action. J Theor Biol., 307 (2012), 125–136. [Google Scholar]
  22. T.C. Gasser, R.W. Ogden, G.A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J Roy Soc. Interface, 3 (2006), 15–35. [CrossRef] [Google Scholar]
  23. A. Geitmann, Y.Q. Li, M. Cresti. The role of the cytoskeleton and dyctyosome activity in the pulsatory growth of Nicotiana tabacum and Petunia hybrida. Bot. Acta, 109 (1996), 102–109. [CrossRef] [Google Scholar]
  24. A. Geitmann, J.K.E. Ortega. Mechanics and modeling of plant cell growth. Trends Plant Sci., 14 (2009), 467–478. [CrossRef] [PubMed] [Google Scholar]
  25. G. Gierz, S. Bartnicki-Garcia. A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept. J Theor. Biol., 208 (2001), 151–164. [CrossRef] [PubMed] [Google Scholar]
  26. J.E.F. Green, A. Friedman. The extensional flow of a thin sheet of incompressible, transversly isotropic fluid. Europ. J Appl. Math., 3 (2008), 225–257. [Google Scholar]
  27. P.B. Green. Growth Physics in Nitella: a Method for Continuous in Vivo Analysis of Extensibility Based on a Micro-manometer Technique for Turgor Pressure. Plant Physiol., 43 (1968), 1169–1184. [CrossRef] [PubMed] [Google Scholar]
  28. P.B. Green. Cell Morphogenesis. Ann. Rev. Plant Physiol., 20 (1969), 365–394. [CrossRef] [Google Scholar]
  29. P.B. Green, R.O. Erickson, J. Buggy. Metabolic and physical control of cell elongation rate: in vivo studies in Nitella. Plant Physiol., 47 (1971), 423–430. [CrossRef] [PubMed] [Google Scholar]
  30. I.B. Heath. Tip growth in plant and fungal cells. Academic Press, Inc., San Diego, CA , 1990. [Google Scholar]
  31. T. Holdaway-Clarke, P. Hepler. Control of pollen tube growth: role of ion gradients and fluxes. New Phytol., 159 (2003), 539–563. [Google Scholar]
  32. R. Huang, A.A. Becker, I.A. Jones. Modelling cell wall growth using a fibre-reinforced hyperelastic-viscoplastic constitutive law. J Mech. Phys. Solids, 60 (2012), 750-783. [Google Scholar]
  33. J.H. Kroeger, A. Geitmann, M. Grant. Model for calcium dependent oscillatory growth in pollen tubes. J Theor. Biol., 253 (2008), 363–374. [Google Scholar]
  34. J.H. Kroeger, R. Zerzour, A. Geitmann. Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS One, 6 (2011), e18549. [CrossRef] [PubMed] [Google Scholar]
  35. J.H. Kroeger, A. Geitmann. Pollen tube growth: Getting a grip on cell biology through modeling. Mech. Res. Comm., 42 (2012), 32–39. [Google Scholar]
  36. S. Lewicka. General and analytic solutions of the Ortega equation. Plant Physiol., 142 (2006), 1493–1510. [CrossRef] [PubMed] [Google Scholar]
  37. J. Liu, B.M.A.G. Piette, M.J. Deeks, V.E. Franklin-Tong, P.J. Hussey. A compartmental model analysis of integrative and self-regulatory ion dynamics in pollen tube growth Plos One, 5 (2010), e13157. [Google Scholar]
  38. J.A. Lockhart. An analysis of irreversible plant cell elongation J Theor. Biol., 8 (1965), 264–275. [Google Scholar]
  39. F. Marga, M. Grandbois, D.J. Cosgrove, T.I. Baskin. Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J., 43 (2005), 181–190. [CrossRef] [PubMed] [Google Scholar]
  40. M.A. Messerli, R. Greton, L.F. Jaffe, K.R. Robinson. Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev. Biol., 222 (2000), 84–98. [CrossRef] [PubMed] [Google Scholar]
  41. F.J. Molz, J.S. Boyer. Growth-induced water potential in plant cells and tissue. Plant Physiol., 62 (1978), 423–429. [CrossRef] [PubMed] [Google Scholar]
  42. R. Murphy, J.K.E. Ortega. A new pressure probe method to determine the average volumetric elastic modulus of cells in plant tissue. Plant Physiol., 107 (1995), 995–1005. [PubMed] [Google Scholar]
  43. R. Murphy, J.K.E. Ortega. A study of the stationary volumetric elastic modulus during dehydration and rehydration of stems of pea seedlings. Plant Physiol., 110 (1996), 1309–1316. [PubMed] [Google Scholar]
  44. H. Nonami, J.S. Boyer. Direct demonstration of a growth-induced water potential gradient. Plant Physiol., 102 (1993), 13–19. [PubMed] [Google Scholar]
  45. J.K.E. Ortega. Augmented growth equation for cell wall expansion. Plant Physiol., 79 (1985), 318–320. [CrossRef] [PubMed] [Google Scholar]
  46. J.K.E. Ortega. Governing equations for plant cell growth. Physiol. Plant, 79 (1990), 116–121. [Google Scholar]
  47. J.K.E. Ortega. A quantitative biophysical perspective of expansive growth for cells with walls. Ed. SG Pandalai, Rec. Res. Dev. Biophys, Transworld Research Network, Kerala, India. 3 (2004), 297–324. [Google Scholar]
  48. J.K.E. Ortega. Plant cell growth in tissue. Plant Physiol., 154 (2010), 1244–1253. [CrossRef] [PubMed] [Google Scholar]
  49. J.K.E. Ortega. Growth rate regulation of cells with walls: The sporangiophores of Phycomyces blakesleeanus used as a model system. Rec. Res. Dev. Plant Physiol., 5 (2012), 1–19. [Google Scholar]
  50. J.K.E. Ortega, R.I. Gamow. The problem of handedness reversal during the spiral growth of Phycomyces. J Theor. Biol., 47 (1974), 317–332. [CrossRef] [PubMed] [Google Scholar]
  51. J.K.E. Ortega, R.G. Keanini, K.J. Manica. Pressure probe technique to study transpiration in Phycomyces sporangiophores. Plant Physiol., 87 (1988), 11–14. [CrossRef] [PubMed] [Google Scholar]
  52. J.K.E. Ortega, K.J. Manica, R.G. Keanini. Phycomyces: Turgor pressure behavior during the light and avoidance growth response. Photochem. Photobiol., 48 (1988), 697–703. [CrossRef] [Google Scholar]
  53. J.K.E. Ortega, E.G. Zehr, R.G. Keanini. In vivo creep and stress relaxation experiments to determine the wall extensibility and yield threshold for the sporangiophores of Phycomyces. Biophys. J., 56 (1989), 465–475. [CrossRef] [PubMed] [Google Scholar]
  54. J.K.E. Ortega, G.E. Lesh-Laurie, M.A. Espinosa, E.L. Ortega, S.M. Manos, M.D. Cunning, J.E.C. Olson. Helical growth of stage-IVb sporangiophores Phycomyces blakesleeanus: the relationship between rotation and elongation growth rates. Planta, 216 (2003), 716–722. [PubMed] [Google Scholar]
  55. J.K.E. Ortega, C.M. Munoz, S.E. Blakley, J.T. Truong, E.L. Ortega. Stiff mutant genes of Phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate. Frontiers in Plant Science, 3 (2012), 1–12. [PubMed] [Google Scholar]
  56. J.K.E. Ortega, M.E. Smith, A.J. Erazo, M.A. Espinosa, S.A. Bell, E.G. Zehr. A comparison of cell-wall-yielding properties for two developmental stages of Phycomyces sporangiophores: Determination by in-vivo creep experiments. Planta, 183 (1991), 613–619. [PubMed] [Google Scholar]
  57. E. Parre, A. Geitmann. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta, 220 (2005), 582–592. [CrossRef] [PubMed] [Google Scholar]
  58. R. Parton, S. Fischer-Parton, M. Watahiki, A. Trewavas. Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes J Cell Sci., 114 (2001), 2685–2695. [PubMed] [Google Scholar]
  59. J.B. Passioura, S.C. Fry. Turgor and cell expansion: beyond the Lockhart equation. Austral. J Plant Physiol., 19 (1992), 565–576. [Google Scholar]
  60. M. Pietruszka. Solutions for a local equation of anisotropic plant cell growth: an analytical study of expansin activity. J Royal Soc. Int., 8 (2011), 975–987. [CrossRef] [Google Scholar]
  61. M. Pietruszka. Special solutions to the Ortega Equation. J Plant Growth Regul., 32 (2013), 102–107. [CrossRef] [Google Scholar]
  62. T.E. Proseus, J.S. Boyer. Calcium deprivation disrupts enlargement of Chara corallina cells: further evidence for the calcium pectate cycle. J Exp. Bot., 63 (2012), 3953–3958. [CrossRef] [PubMed] [Google Scholar]
  63. T.E. Proseus, J.K.E. Ortega, J.S. Boyer. Separating growth from elastic deformation during cell enlargement. Plant Physiol., 119 (1999), 775–784. [CrossRef] [PubMed] [Google Scholar]
  64. T.E. Proseus, G.L. Zhu, J.S. Boyer. Turgor, temperature and the growth of plant cells:using Chara corallina as a model system. J. Exp. Bot., 51 (2000), 1481–1494. [CrossRef] [PubMed] [Google Scholar]
  65. P.A. Richmond, J.-P. Métraux, L. Taiz. Cell expansion patterns and directionality of wall mechanical properties in Nitella Plant Physiol., 65 (1980), 211–217. [CrossRef] [PubMed] [Google Scholar]
  66. E.K. Rodriguez, A. Hoger, A. McCulloch. Stress-dependent finite growth in soft elastic tissue. J. Biomechanics, 27 (1994), 455–467. [Google Scholar]
  67. P.A. Roelofsen. The origin of spiral growth in Phycomyces sporangiophores. Record of Travaux Botaniques Neerlandais, 42 (1950), 72–110. [Google Scholar]
  68. P. Roelofsen. Cell wall structure in the growth zone of Phycomyces sporangiophores. II. Double refraction and electron microscopy. The origin of spiral growth in Phycomyces sporangiophores. Biochemica et Biophysica Acta, 6 (1951), 357–373. [Google Scholar]
  69. E.R. Rojas, S. Hotton, J. Dumais. Chemically-mediated Mechanical expansion of the pollen tube cell wall. Biophys. J., 101 (2011), 1844–1853. [CrossRef] [PubMed] [Google Scholar]
  70. J. Ruiz-Herrera. Fungal cell wall: Structure, synthesis, and assembly. CRC Press, New York, 2012. [Google Scholar]
  71. J.C. Simo, T.J.R. Hughes. Computational Inelasticity. Springer, New York, 1998. [Google Scholar]
  72. A.J.M. Spencer. A theory of viscoplasticity for fabric-reinforced composites. J Mech. Phys. Solids, 49 (2001), 2667–2687. [CrossRef] [Google Scholar]
  73. L. Taiz. Plant Cell Expansion: Regulation of Cell Wall Mechanical Properties. Ann. Rev. Plant Physiol., 35 (1984), 585–657. [CrossRef] [Google Scholar]
  74. A.-C. Tang, J.S. Boyer. Xylem tension affect growth-induced water potential and daily elongation of maize leaves. J Exp. Bot., 59 (2008), 753–764. [CrossRef] [PubMed] [Google Scholar]
  75. R. Vandiver, A. Goriely. Tissue tension and axial growth of cylindrical structures in plants and elastic tissues. Europhys. Letter, 84 (2008), 58004. [CrossRef] [EDP Sciences] [Google Scholar]
  76. B. Veytsmann, D.J. Cosgrove. A model of cell wall expansion based on thermodynamics of polymer networks. Biophys. J., 75 (1998), 2240–2250. [CrossRef] [PubMed] [Google Scholar]
  77. J.G.H. Wessel. Tip growth in plant and fungal cells. IB Heath (Ed.), Academic Press, Inc., San Diego, CA (1990), 1–29. [Google Scholar]
  78. A. Yan, G. Xu, Z.-B. Yang. Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. PNAS, 106 (2009), 22002–22007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.