Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 4, 2013
Plant growth modelling
Page(s) 112 - 130
DOI https://doi.org/10.1051/mmnp/20138407
Published online 10 July 2013
  1. D.R. Anderson. Model based inference in the life sciences. Springer, 2008. [Google Scholar]
  2. C. Baey, A. Didier, S. Li, S. Lemaire, F. Maupas, P.-H. Cournède. Evaluation of the predictive capacity of five plant growth models for sugar beet. 4th international symposium on Plant Growth and Applications (PMA12), Shanghai, China, IEEE, 2012. [Google Scholar]
  3. C. Baey, A. Didier, S. Lemaire, F. Maupas, P.-H. Cournède. Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model. Ecological Modelling, 263 (2013), 56–63. [CrossRef] [Google Scholar]
  4. J. Bertheloot, P.-H. Cournède, B. Andrieu. NEMA, a functional-structural model of N economy within wheat culms after flowering: I. Model description. Annals of Botany, 108 (2011), No. 6, 1085–1096. [CrossRef] [PubMed] [Google Scholar]
  5. B.M. Bolker. Ecological models and data in R. Princeton University Press, 2008. [Google Scholar]
  6. N. Brisson, C. Gary, E. Justes, R. Roche, B. Mary, D. Ripoche, D. Zimmer, J. Sierra, P. Bertuzzi, P. Burger, F. Bussière, Y.M. Cabidoche, P. Cellier, P. Debaeke, J.P. Gaudillère, C. Hénault, F. Maraux, B. Seguin, H. Sinoquet. An overview of the crop model STICS. European Journal of Agronomy, 18 (2003), 309–332. [CrossRef] [Google Scholar]
  7. V. Brukkin, N. Morozova. Plant growth and development - basic knowledge and current views. Mathematical Modelling of Natural Phenomena, 6 (2011), No. 2, 1–53. [Google Scholar]
  8. K.P. Burnham, D.R. Anderson. Model selection and multimodel inference: a practical information-theoretic approach. 2nd edition, Springer Verlag, 2002. [Google Scholar]
  9. K. Campbell, M.D. McKay, and B.J. Williams. Sensitivity analysis when model outputs are functions. Reliability Engineering and System Safety, 91 (2006), No. 10-11, 1468–1472. [CrossRef] [Google Scholar]
  10. F. Campillo, V. Rossi. Convolution particle filter for parameter estimation in general state-space models. IEEE Transactions on Aerospace and Electronic Systems, 45 (2009), No. 3, 1063–1072. [CrossRef] [Google Scholar]
  11. F. Campolongo, J. Cariboni, A. Saltelli. An effective screening design for sensitivity analysis of large models. Environmental Modelling and Software, 22 (2007), 1509–518. [CrossRef] [Google Scholar]
  12. O. Cappé, E. Moulines, T. Rydén. Inference in hidden Markov models, Springer, New York, 2005. [Google Scholar]
  13. J. Cariboni, D. Gatelli, R. Liska, A. Saltelli. The role of sensitivity analysis in ecological modelling. Ecological Modelling, 203 (2007), 167–182. [Google Scholar]
  14. E.R. Carson, C. Cobelli. Modelling methodology for physiology and medicine. Academic Press, San Diego (US), 2001. [Google Scholar]
  15. Y. Chen, B. Bayol, C. Loi, S. Trevezas, P.-H. Cournède. Filtrage par noyaux de convolution itératif. Actes des 44èmes Journées de Statistique, JDS2012, Bruxelles 21-25 Mai 2012. [Google Scholar]
  16. P.-H. Cournède. Dynamic system of plant growth. HDR Thesis, University of Montpellier II, 2009. [Google Scholar]
  17. P.-H. Cournède, M.Z. Kang, A. Mathieu, J.-F. Barczi, H.P. Yan, B.G. Hu, P. de Reffye. Structural factorization of plants to compute their functional and architectural growth. Simulation, 82 (2006), No. 7, 427–438. [CrossRef] [Google Scholar]
  18. P.-H. Cournède, V. Letort, A. Mathieu, M.Z. Kang, S. Lemaire, S. Trevezas, F. Houllier, P. de Reffye. Some parameter estimation issues in functional-structural plant modelling. Math. Model. Natural Phenom., 6 (2011), No. 2, 133–159. [CrossRef] [EDP Sciences] [Google Scholar]
  19. D.C. Cox, P. Baybutt. Methods for uncertainty analysis: a comparative survey. Risk Analysis, 1 (1981), No. 4, 251–258. [CrossRef] [Google Scholar]
  20. L. Dente, G. Satalino, F. Mattia, M. Rinaldi. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-wheat model to map wheat yield. Remote Sensing of Environment, 112 (2008), No. 4, 1395–1407. [CrossRef] [Google Scholar]
  21. P. de Reffye, E. Heuvelink, D. Barthélémy, P.-H. Cournède. Plant growth models. Ecological Models, Vol. 4 of Encyclopedia of Ecology (5 volumes) (S.E. Jorgensen and B. Fath, eds.), Elsevier, Oxford, 2008, pp. 2824–2837. [Google Scholar]
  22. B. Efron, R.J. Tibshirani. An introduction to the bootstrap. Chapman & Hall / CRC Monographs on Statistics and Applied Probability, 1994. [Google Scholar]
  23. G. Evensen. Data assimilation: The ensemble Kalman filter. Springer, 2009. [Google Scholar]
  24. G.C. Goodwin, R.L. Payne. Dynamic system identification: Experiment design and data analysis. Academic Press, New York, 1977. [Google Scholar]
  25. M. Guérif, C. Duke. Calibration of the sucros emergence and early growth module for sugar beet using optical remote sensing data assimilation. European Journal of Agronomy, 9 (1998), 127–136. [CrossRef] [Google Scholar]
  26. M. Guérif, C. Duke. Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation. Agriculture, Ecosystems and Environment, 81 (2000), No. 1, 57–69. [CrossRef] [Google Scholar]
  27. J.C. Helton, J.D. Johnson, C.J. Salaberry, C.B. Storlie. Survey of sampling based methods for uncertainty and sensitivity analysis. Reliability Engineering and System Safety, 91 (2006), 1175–1209. [CrossRef] [Google Scholar]
  28. Y. Guo, Y.T. Ma, Z.G. Zhan, B.G. Li, M. Dingkuhn, D. Luquet, P. de Reffye. Parameter optimization and field validation of the functional-structural model Greenlab for Maize. Annals of Botany, 97 (2006), 217–230. [CrossRef] [PubMed] [Google Scholar]
  29. Y. Guo, T. Fourcaud, M. Jaeger, X.P. Zhang, B.G. Li. Plant growth and architectural modelling and its applications. Annals of Botany, 107 (2011), 723–727. [CrossRef] [PubMed] [Google Scholar]
  30. R. Hemmerling, O. Kniemeyer, D. Lanwert, G. Buck-Sorlin, W. Kurth. The rule based language XL and the modeling environment GroIMP illustrated with simulated tree competition. Functional Plant Biology 35 (2008), No. 10, 739–750. [CrossRef] [Google Scholar]
  31. T. Homma, A. Saltelli. Importance measures in global sensitivity analysis of nonlinear models. Reliability Engineering and System Safety, 52 (1996), 1–17. [Google Scholar]
  32. C.A. Jones, J.R. Kiniry. Ceres-Maize: A simulation model of Maize growth and development. Texas A&M University Press, 1986. [Google Scholar]
  33. S. Julier, J. Uhlmann, H.F. Durrant-Whyte. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45 (2000), No. 3, 477–482. [Google Scholar]
  34. B.A. Keating, P.S. Carberry, G.L. Hammer, M.E. Probert, M.J. Robertson, D. Holzworth, N.I. Huth, J.N.G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J.P. Dimes, M. Silburn, E. Wang, S. Brown, K.L. Bristow, S. Asseng, S. Chapman, R.L. McCown, D.M. Freebairn, C.J. Smith. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18 (2003), No. 3-4, 267–288. [CrossRef] [Google Scholar]
  35. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi. Optimization by Simulated Annealing. Science, 220 (1983), No. 4598, 671–680. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. G. Kitagawa. Monte Carlo filter and smoother for non-gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5 (1996), No. 1, 1–25. [MathSciNet] [Google Scholar]
  37. E. Kuhn, M. Lavielle. Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics and Data Analysis, 49 (2005), No. 4, 1020–1038. [Google Scholar]
  38. M. Lamboni, H. Monod, D. Makowski. Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research, 113 (2009), 312–320. [CrossRef] [Google Scholar]
  39. M. Launay, M. Guérif. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agriculture, ecosystems and environment, 111 (2005), 321–339. [CrossRef] [Google Scholar]
  40. J. Lecoeur, R. Poiré-Lassus, A. Christophe, B. Pallas, P. Casadebaig, P. Debaeke, F. Vear, L. Guilioni. Quantifying physiological determinants of genetic variation for yield potential in sunflower. SUNFLO: a model-based analysis. Functional Plant Biology, 38 (2011), 246–259. [CrossRef] [Google Scholar]
  41. F. Legland, C. Musso, N. Oudjane. An analysis of regularized interacting particle methods for nonlinear filtering. 3rd IEEE Workshop on Computer-Intensive Methods in Control and Data Processing, Prague, 1998. [Google Scholar]
  42. S. Lemaire, F. Maupas, P.-H. Cournède, P. de Reffye. A morphogenetic crop model for sugar-beet (Beta Vulgaris l.). Crop Modeling and Decision Support, (W. Cao, J. White, E. Wang, eds.), Springer, 2009, pp 116–129. [Google Scholar]
  43. S. Lemaire, F. Maupas, P.-H. Cournède, J.-M. Allirand, P. de Reffye, B. Ney. Analysis of the density effects on the source-sink dynamics in sugar-beet growth. 3rd international symposium on Plant Growth and Applications(PMA09), Beijing, China (B.-G. Li, M. Jaeger, Y. Guo, eds.), IEEE Computer Society (Los Alamitos, California), Novem. 9-12 2009. [Google Scholar]
  44. C. Loi, P.-H. Cournède. Generating functions of stochastic L-systems and application to models of plant development. Discrete Mathematics and Theoretical Computer Science Proceedings, AI (2008), 325–338. [Google Scholar]
  45. Y. Ma, M.P. Wen, Y. Guo, B.G. Li, P.-H. Cournède, P. de Reffye. Parameter optimization and field validation of the functional-structural model GreenLab for maize at different population densities. Annals of Bot., 101 (2008), 1185–1194. [CrossRef] [Google Scholar]
  46. A. Mathieu, P.-H. Cournède, V. Letort, D. Barthélémy, P. de Reffye. A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition. Annals of Botany, 103 (2009), 1173–1186. [CrossRef] [PubMed] [Google Scholar]
  47. H. Monod, C. Naud, D. Makowski. Uncertainty and sensitivity analysis for crop models. Working with Dynamic Crop Models (D. Wallach, D. Makowski, J.W. Jones, eds.), Elsevier, 2006, pp. 55–100. [Google Scholar]
  48. M.G. Morgan, M. Henrion, M. Small. Uncertainty. Cambridge University Press, 1990. [Google Scholar]
  49. M.D. Morris. Factorial sampling plans for preliminary computational experiments. Technometrics, 33 (1991), 161–174. [Google Scholar]
  50. T. Nilson. A theoretical analysis of the frequency of gaps in plant stands. Agricult. and Forest Meteorol., 8 (1971), 25–38. [CrossRef] [Google Scholar]
  51. A. O’Hagan, J.J. Forster. Kendall’s advanced theory of statistics: Bayesian inference. Arnold, London, 2nd edit., 2004, [Google Scholar]
  52. J. Perttunen, R. Sievänen, E. Nikinmaa, H. Salminen, H. Saarenmaa, J. Vakeva. Incorporating Lindenmayer systems for architectural development in a functional-structural tree model. Ecological Modelling, 181 (2005), 479–491. [CrossRef] [Google Scholar]
  53. C. Pradal, S. Dufour-Kowalski, F. Boudon, C. Fournier, C. Godin. OpenAlea: a visual programming and component-based software platform for plant modelling. Functional Plant Biology, 35 (2008), No. 10, 751–760. [CrossRef] [Google Scholar]
  54. V. Rossi, J.-P. Vila. Nonlinear filtering in discrete time: A particle convolution approach. Annales de l’Institut de Statistique de l’Université de Paris, 50 (2006), No. 3, 71–102. [Google Scholar]
  55. F. Ruget, N. Brisson, R. Delécolle, R. Faivre. Sensitivity analysis of a crop simulation model, STICS, in order to choose the main parameters to be estimated. Agronomie, 22 (2002), 133–158. [CrossRef] [EDP Sciences] [Google Scholar]
  56. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola. Global sensitivity analysis. The primer ed., John Wiley&Sons, 2008. [Google Scholar]
  57. Y.H. Shi, R. Eberhart. A modified particle swarm optimizer. Evolutionary Computation Proceedings (IEEE World Congress on Computational Intelligence) (K.R. Belew, L.B. Booker, eds.), Morgan Kaufmann, 1998, pp. 69–73. [Google Scholar]
  58. I. Sobol. Sensitivity analysis for non-linear mathematical models. Math. Model. Comput. Experim., 1 (1993), 407–414. [Google Scholar]
  59. S. Trevezas, P.-H. Cournède. A sequential Monte Carlo approach for MLE in a plant growth model. Journal of Agricultural, Biological, and Environmental Statistics, 18 (2013), No. 2, 250–270. [Google Scholar]
  60. W. Taylor. Small sample properties of a class of two-stage Aitken estimator. Econometrica, 45 (1977), No. 2, 497–508. [CrossRef] [MathSciNet] [Google Scholar]
  61. R.H. Van Waveren, S. Groot, H. Scholten, F. Van Geer, H. Wosten, R. Koeze, J. Noort. Good modelling practice handbook. Tech. Report 99-05, STOWA, Utrecht, RWS-RIZA, Lelystad, The Netherlands, 1999. [Google Scholar]
  62. H. Varella, S. Buis, M. Launay, and M. Guérif. Global sensitivity analysis for choosing the main soil parameters of a crop model to be determined. Agricultural Sciences, 3 (2012), 949–961. [CrossRef] [Google Scholar]
  63. J. Vos, J.B. Evers, G.H. Buck-Sorlin, B. Andrieu, M. Chelle, P.H.B. de Visser. Functional-structural plant modelling: a new versatile tool in crop science. Journal of Experimental Botany, 61 (2010), No. 8, 2101–2115. [CrossRef] [PubMed] [Google Scholar]
  64. D. Wallach, B. Goffinet. Mean Squared Error of Prediction in Models for Studying Ecological and Agronomic Systems. Biometrics, 43 (1987), No. 3, 561–573. [CrossRef] [Google Scholar]
  65. D. Wallach, B. Goffinet, J.-E. Bergez, P. Debaeke, D. Leenhardt, J.-N. Aubertot. The effect of parameter uncertainty on a model with adjusted parameters. Agronomie, 22 (2002), 159–170. [CrossRef] [EDP Sciences] [Google Scholar]
  66. D. Wallach, S. Buis, P. Lecharpentier, J. Bourges, P. Clastre, M. Launay, J.-E. Bergez, M. Guérif, J. Soudais, E. Justes. A package of parameter estimation methods and implementation for the STICS crop-soil model. Environmental Modelling and Software, 26 (2011), 386–394. [CrossRef] [Google Scholar]
  67. E. Walter, L. Pronzato. Identification de modèles paramétriques. Masson, Paris, 2006. [Google Scholar]
  68. Q. Wu, P.-H. Cournède. Sensitivity analysis of Greenlab model for Maize. 3rd international symposium on Plant Growth and Applications(PMA09), Beijing, China (B.G. Li, M. Jaeger, Y. Guo, eds.), IEEE, November 9-12 2009. [Google Scholar]
  69. Q. Wu, P.-H. Cournède, A. Mathieu. An efficient computational method for global sensitivity analysis and its application to tree growth modelling Reliability Engineering and System Safety, 107 (2012), 35–43. [CrossRef] [Google Scholar]
  70. Q. Wu, P.-H. Cournède. A comprehensive methodology of global sensitivity analysis for complex mechanistic models: An application to plant growth. Submitted, (2013). [Google Scholar]
  71. H.P. Yan, M.Z. Kang, P. de Reffye, M. Dingkuhn. A dynamic, architectural plant model simulating resource-dependent growth. Annals of Botany, 93 (2004), 591–602. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.