Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 5, 2013
Bifurcations
Page(s) 131 - 154
DOI https://doi.org/10.1051/mmnp/20138509
Published online 17 September 2013
  1. H.-C. Kao, E. Knobloch. Weakly subcritical stationary patterns: Eckhaus stability and homoclinic snaking, Phys. Rev. E 85 (2012), 026207. [Google Scholar]
  2. W. Eckhaus, G. Iooss. Strong selection or rejection of spatially periodic patterns in degenerate bifurcations, Physica D 39 (1989), pp. 124–146. [Google Scholar]
  3. A. Shepeleva. On the validity of the degenerate Ginzburg-Landau equation, Math. Method Appl. Sci. 20 (1997), pp. 1239–1256. [CrossRef] [Google Scholar]
  4. H. Brand, R. Deissler. Eckhaus and Benjamin-Feir instabilities near a weakly inverted bifurcation, Phys. Rev. A 45 (1992), pp. 3732–3736. [CrossRef] [PubMed] [Google Scholar]
  5. J. Burke, E. Knobloch. Localized states in the generalized Swift-Hohenberg equation, Phys. Rev. E 73 (2006), 056211. [Google Scholar]
  6. O. Batiste, E. Knobloch, A. Alonso, I. Mercader. Spatially localized binary-fluid convection, J. Fluid Mech. 560 (2006), pp. 149–158. [Google Scholar]
  7. C. Beaume, A. Bergeon, E. Knobloch. Homoclinic snaking of localized states in doubly diffusive convection, Phys. Fluids 23 (2011), 094102. [CrossRef] [Google Scholar]
  8. A. Doelman and W. Eckhaus. Periodic and quasi-periodic solutions of degenerate modulation equations, Physica D 53 (1991), pp. 249–266. [Google Scholar]
  9. J. Duan, P. Holmes. Fronts, domain walls and pulses in a generalized Ginzburg-Landau equation, Proc. Edinburgh Math. Soc. 38 (1995), pp. 77–97. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Shepeleva. Modulated modulations approach to the loss of stability of periodic solutions for the degenerate Ginzburg-Landau equation, Nonlinearity 11 (1998), pp. 409–429. [Google Scholar]
  11. D. Henry. Geometric theory of semilinear parabolic equations, Springer-Verlag, Berlin, 1981. [Google Scholar]
  12. R. Hoyle. Pattern Formation, Cambridge University Press, Cambridge, 2006. [Google Scholar]
  13. J. Duan, P. Holmes, E. S. Titi. Global existence theory for a generalized Ginzburg-Landau equation, Nonlinearity 5 (1992), pp. 1303–1314. [Google Scholar]
  14. S. M. Cox, P. C. Matthews. Exponential time differencing for stiff systems, J. Comp. Phys. 176 (2002), pp. 430–455. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Kramer, W. Zimmermann. On the Eckhaus instability for spatially periodic patterns, Physica D 16 (1985), pp. 221–232. [Google Scholar]
  16. E. Ben-Jacob, H. Brand, G. Dee, L. Kramer, J. S. Langer. Pattern propagation in nonlinear dissipative systems, Physica D 14 (1985), pp. 348–364. [Google Scholar]
  17. W. van Saarloos. Front propagation into unstable states. II. Linear versus nonlinear marginal stability and rate of convergence, Phys. Rev. A 39 (1989), pp. 6367–6390. [Google Scholar]
  18. J. Burke, J. H. P. Dawes. Localised states in an extended Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst. 11 (2012), pp. 261–284. [Google Scholar]
  19. L. J. Boya. Supersymmetric quantum mechanics: two simple examples, Eur. J. Phys. 9 (1988), pp. 139–144. [Google Scholar]
  20. C. M. Elliott, S. Zheng. On the Cahn-Hilliard equation, Arch. Rational Mech. Anal. 96 (1986), pp. 339–357. [CrossRef] [MathSciNet] [Google Scholar]
  21. C. Beaume, A. Bergeon, H.-C. Kao, E. Knobloch. Convectons in a rotating fluid layer, J. Fluid Mech. 717 (2013), pp. 417–448. [Google Scholar]
  22. E. Knobloch, J. DeLuca. Amplitude equations for travelling wave convection, Nonlinearity 3 (1990), pp. 975–980. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.