Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 5, 2013
Bifurcations
Page(s) 119 - 130
DOI https://doi.org/10.1051/mmnp/20138508
Published online 17 September 2013
  1. A. Ali, H. Kalisch. Mechanical balance laws for Boussinesq models of surface water waves J. Nonlinear Sci. 22 (2012), 371-398. [CrossRef] [MathSciNet] [Google Scholar]
  2. V. Andreev. O. Kaptsov. V. Pukhnachev, A. Rodionov. Applications of group theoretic methods in hydrodynamics. Novosibirsk, Nauka. (Russian). English translation by Kluwer Academic Publishers (1994). [Google Scholar]
  3. S. Balasuriya. Vanishing viscosity in the barotropic β−plane J. Math.Anal. Appl. 214, 128-150. [Google Scholar]
  4. A. Buchnev. Lie group admitted by the equations of motion of an ideal incompressible fluid. Continuum Dynamics. 7 (1971) pp. 212-214. Institute of Hydrodynamics, USSR Acad. Sci., Siberian Branch, Novosibirsk. (Russian). [Google Scholar]
  5. H. Cho, T. Shepherd, V. Vladimirov. Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere. J. Atmosph. Sci. 50 6 (1993), 822-836. [CrossRef] [Google Scholar]
  6. E. Dewan, R. Picard, R. O’Neil, H. Gardiner, J. Gibson. MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett. 25 (1998), 939-942. [CrossRef] [Google Scholar]
  7. R. Fjortoft. Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geophys. Publ., 17 (6) 1950, 1-52. [Google Scholar]
  8. A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press. 1983 [Google Scholar]
  9. G.H. Haltiner, R.T. Williams. Numerical prediction and dynamic meteorology 1980. [Google Scholar]
  10. P.A. Hsieh. Application of modflow for oil reservoir simulation during the Deepwater Horizon crisis. Ground Water. 49 (3), (2011), 319-323. [CrossRef] [PubMed] [Google Scholar]
  11. N.H. Ibragimov. Nonlinear self-adjointness in constructing conservation laws. Archives of ALGA 7 (8) (2010-2011), 1-99. [Google Scholar]
  12. N.H. Ibragimov. Nonlinear self-adjointness in constructing conservation laws. arXiv: 1109.1728v1[math-ph], (2011), 1-104. [Google Scholar]
  13. N.H. Ibragimov, R.N. Ibragimov. Rotationally symmetric internal gravity waves. J. Non-Linear Mech. (2011), doi:10.1017/j.ijnonlinmec.2011.08.011. [Google Scholar]
  14. R.N. Ibragimov, N. Yilmaz, A.S. Bakhtiyarov. Experimental mixing parameterization due to multiphase fluid-structure interaction. Mechanics Research Communications, 38 (2011), 261-266. [Google Scholar]
  15. D. Nethery, D. Shankar. Vertical propagation of baroclinic Kelvin waves along the west coast of India. J. Earth. Syst. Sci. 116 4 (2007), 331-339. [CrossRef] [Google Scholar]
  16. H. Kalisch, N.T. Nguyen. On the stability of internal waves. J. Phys. A. 43 (2010), 495205. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.D. Romea, J.S. Allen. On vertically propagating coastal Kelvin waves at low latitudes. J. Phys. Oceanogr. 13 (1983) 1, 241-1,254. [Google Scholar]
  18. D.T. Shindell, G.A. Schmidt. Southern Hemisphere climate response to ozone changes and greenhouse gas increases Res. Lett. 31 (2004), L18209. [Google Scholar]
  19. C. Staquet, J. Sommeria. Internal Gravity Waves: From instabilities to turbulence. Annu. Rev. Fluid Mech. 34 (2002), 559-593. [NASA ADS] [CrossRef] [Google Scholar]
  20. R. Szoeke, R.M. Samelson. The duality between the Boussinesq and non-Boussinesq hydrostatic equations of motion. J. Phys. Oceanogr. 32 (2002), 2194–2203. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.