Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 5, 2013
Page(s) 95 - 118
Published online 17 September 2013
  1. J. F. Andrews. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng., 10 (1968), 707-723. [CrossRef] [Google Scholar]
  2. R. Bogdanov. Bifurcations of a limit cycle for a family of vector fields on the plane. Selecta Math. Soviet. 1 (1981), 373-388. [Google Scholar]
  3. R. Bogdanov. Versal deformations of a singular point on the plane in the case of zero eigen-values. Selecta Math. Soviet. 1 (1981), 389-421. [Google Scholar]
  4. F. Brauer. Periodic solutions of some ecological models. J. Theor. Biol. 69 (1977), 143-152. [CrossRef] [PubMed] [Google Scholar]
  5. F. Brauer, D. A Sánchez. Periodic environments and periodic harvesting. Natural Resource Modeling. 16(3) (2003), 233-244. [CrossRef] [Google Scholar]
  6. J. B. Collings. The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model. J. Math. Biol., 36 (1997), 149-168. [CrossRef] [Google Scholar]
  7. S.-N. Chow, J. K. Hale. Methods of Bifurcation Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1982. [Google Scholar]
  8. R. M. Etoua, C. Rousseau. Bifurcation analysis of a Generalissed Gause model with prey harvesting and a generalized Holling response function of type III. J. Differential Equations, 249 (2010), 2316-2356. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. W. Hirsch, S. Smale, R. L. Devaney. Differential Equations, Dynamical Systems and An Introduction to Chaos. Elsevier, California, 2004. [Google Scholar]
  10. E. Hammill, O. L. Petchey, B. R. Anholt. Predator functional response changed by induced defenses in prey. The American Naturalist, 176(6) (2010), 723-731. [CrossRef] [PubMed] [Google Scholar]
  11. Y. Lamontagne, C. Coutu, C. Rousseau. Bifurcation analysis of a predator-prey system with generalized Holling type III functional response. J. Dynam. Differential Equations. 20 (2008), 535-571. [Google Scholar]
  12. R. May, J. R. Beddington, C. W. Clark, S. J. Holt, R. M. Laws. Management of multispecies fisheries. Science, 205 (1979), 267-277. [CrossRef] [PubMed] [Google Scholar]
  13. L. Perko. Differential Equations and Dynamical Systems. Springer, New York, 1996. [Google Scholar]
  14. S. Ruan, D. Xiao. Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math., 61(4) (2001), 1445-1472. [CrossRef] [Google Scholar]
  15. F. Takens. Forced oscillations and bifurcation, in “Applications of Global Analysis I”. Comm. Math. Inst. Rijksuniversitat Utrecht. 3 (1974), 1-59. [Google Scholar]
  16. R. J. Taylor. Predation. Chapman and Hall, New York, 1984. [Google Scholar]
  17. G. S. K. Wolkowicz. Bifurcation analysis of a predator-prey system involving group defence. SIAM J. Appl. Math. 48 (1988), 592-606. [CrossRef] [MathSciNet] [Google Scholar]
  18. D. Xiao, H. Zhu. Multiple focus and hopf bifurcations in a predaotr-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 66 (2006), 802-819. [CrossRef] [Google Scholar]
  19. H. Zhu, S. A. Campbell, G. S. K. Wolkowicz. Bifurcation analysis of a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63 (2002), 636-682. [Google Scholar]
  20. Z. Zhang, T. Ding, W. Huang, Z. Dong. Qualitative Theory of Differential Equation. Transl. Math. Monogr. Vol. 101, Amer. Math. Soc. Providence, RI, 1992. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.