Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 5, 2013
Bifurcations
Page(s) 84 - 94
DOI https://doi.org/10.1051/mmnp/20138506
Published online 17 September 2013
  1. R. Woesler, P. Schütz, M. Bode, M. Or-Guil, H.-G. Purwins. Oscillations of fronts and front pairs in two- and three-component reaction-diffusion systems. Physica D, 91 (1996), 376–405, 1996. [CrossRef] [Google Scholar]
  2. C. P. Schenk, M. Or-Guil, M. Bode, H.-G. Purwins. Interacting pulses in three-component reaction diffusion systems on two-dimensional domains. Physical Review Letters, 78 (1997), 3781–3784. [Google Scholar]
  3. R. Kapral, K. Showalter, editors. Chemical Waves and Patterns, vol. 10 of Understanding Chemical Reactivity, Kluwer Academic Publishers, Dordrecht, 1995. [Google Scholar]
  4. M. A. Dahlem, R. Graf, A. J. Strong, J. P. Dreier, Y. A. Dahlem, M. Sieber, W. Hanke, K. Podoll, E. Schöll. Two-dimensional wave patterns of spreading depolarization: Retracting, re-entrant, and stationary waves. Physica D: Nonlinear Phenomena, 239 (2010), 889–903. [CrossRef] [Google Scholar]
  5. H.-G. Purwins, H.U. Bïdeker. Sh. Amiranashvili. Dissipative solitons. Advances in Physics, 59 (2010), 485–701. [Google Scholar]
  6. H. Engel, F.-J. Niedernostheide, H.-G. Purwins, E. Schöll. Self-Organization in Activator-Inhibitor-Systems: Semiconductors, Gas-Discharge and Chemical Active Media. Wissenschaft und Technik Verlag, Berlin, 1996. [Google Scholar]
  7. S. V. Gurevich, Sh. Amiranashvili, H.-G. Purwins. Breathing dissipative solitons in three-component reaction-diffusion system. Physical Review E, 74 (2006) 066201. [Google Scholar]
  8. M. Or-Guil, M. Bode, C. P. Schenk, H.-G. Purwins. Spot Bifurcations in Three-Component Reaction-Diffusion Systems: The Onset of Propagation. Physical Review E, 57 (1998), 6432–6437. [Google Scholar]
  9. M. Bode, A. W. Liehr, C. P. Schenk, H.-G. Purwins. Interaction of Dissipative Solitons: Particle-like Behaviour of Localized Structures in a Three-Component Reaction-Diffusion System. Physica D, 161 (2002), 45–66. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Bode. Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter distribution. Physica D, 106 (1997), 270–286. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Schütz, M. Bode, V. V. Gafiichuk. Transition from stationary to travelling localized patterns in a two-dimensional reaction-diffusion systems. Physical Review E, 52 (1995), 4465–4473 [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Ankiewicz N. Akhmediev, editors. Dissipative Solitons. Volume 661 of Lecture Notes in Physics, Springer, Berlin, 2005. [Google Scholar]
  13. A. Ankiewicz N. Akhmediev, editors. Dissipative Solitons: From Optics to Biology and Medicine. Volume 751 of Lecture Notes in Physics, Springer, Berlin, 2008. [Google Scholar]
  14. A. S. Mikhailov, K. Showalter. Control of waves, patterns and turbulence in chemical systems. Physics Reports, 425 (2006), 79–194. [Google Scholar]
  15. C.I. Christov, M.G. Velarde. Dissipative solitons. Physica D: Nonlinear Phenomena, 86 (1995), 323–347. [CrossRef] [Google Scholar]
  16. R. Richter, A. Lange. Surface Instabilities of Ferrofluids. in S. Odenbach (editor), Colloidal Magnetic Fluids, vol. 763 of of Lecture Notes in Physics, Springer Berlin, 2009. [Google Scholar]
  17. O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, J. Fineberg. Oscillons and propagating solitary waves in a vertically vibrated colloidal suspension. Physical Review Letters, 83 (1999), 3190. [Google Scholar]
  18. P. B. Umbanhowar, F. Melo, H. L. Swinney. Localized excitations in a vertically vibrated granular layer. Nature, 382 (1996), 793–796 [CrossRef] [Google Scholar]
  19. H. Haken. Synergetics. Introduction and Advanced Topics, Springer, Berlin, 1983. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.