Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 5, 2013
Page(s) 173 - 189
Published online 17 September 2013
  1. D. M. Abrams, S. H. Strogatz. Chimera states for coupled oscillators. Phys. Rev. Lett., 93 (2004), 174102. [CrossRef] [PubMed] [Google Scholar]
  2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwanga. Complex networks: Structure and dynamics. Phys. Rep., 424 (2006), 175–308. [Google Scholar]
  3. P. C. Bressloff, S. Coombes, B. de Souza. Dynamics of a ring of pulse-coupled oscillators: Group-theoretic approach. Phys. Rev. Lett., 79 (1997), 2791–2794. [CrossRef] [Google Scholar]
  4. J.J. Collins, I. Stewart. A group-theoretic approach to rings of coupled biological oscillators. Biol. Cybern., 71 (1994), 95–103. [CrossRef] [PubMed] [Google Scholar]
  5. H. Daido. Strange waves in coupled-oscillator arrays: Mapping approach. Phys. Rev. Lett., 78 (1997), 1683–1686. [CrossRef] [Google Scholar]
  6. E. J. Doedel. AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Montreal, Canada, April 2006. [Google Scholar]
  7. W. Eckhaus. Studies in Non-Linear Stability Theory, vol. 6 of Springer Tracts in Natural Philosophy. Springer, New York, 1965. [Google Scholar]
  8. N. Fenichel. Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21 (1971), 193–226. [Google Scholar]
  9. Y. Horikawa, H. Kitajima. Transient chaotic rotating waves in a ring of unidirectionally coupled symmetric bonhoeffer-van der pol oscillators near a codimension-two bifurcation point. Chaos, 22 (2012), 033115. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. Y. Horikawa. Exponential dispersion relation and its effects on unstable propagating pulses in unidirectionally coupled symmetric bistable elements. Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 2791–2803. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Koseska, J. Kurths. Topological structures enhance the presence of dynamical regimes in synthetic networks. Chaos, 20(4):045111, 2010. [CrossRef] [PubMed] [Google Scholar]
  12. Y. Kuznetsov. Elements of Applied Bifurcation Theory. vol. 112 of Applied Mathematical Sciences. Springer-Verlag, 1995. [Google Scholar]
  13. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon. Network motifs: Simple building blocks of complex networks. Science, 298 (2002), 824–827. [CrossRef] [PubMed] [Google Scholar]
  14. L. M. Pecora, T. L. Carroll. Master stability functions for synchronized coupled systems. Phys. Rev. Lett., 80 (1998), 2109–2112. [CrossRef] [Google Scholar]
  15. P. Perlikowski, S. Yanchuk, O. V. Popovych, P. A. Tass. Periodic patterns in a ring of delay-coupled oscillators. Phys. Rev. E, 82 (2010), 036208. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Perlikowski, S. Yanchuk, M. Wolfrum, A. Stefanski, P. Mosiolek, T. Kapitaniak. Routes to complex dynamics in a ring of unidirectionally coupled systems. Chaos, 20 (2010), 013111. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. O. V. Popovych, S. Yanchuk, P. A. Tass. Delay- and coupling-induced firing patterns in oscillatory neural loops. Phys. Rev. Lett. 107 (2011), 228102. [CrossRef] [PubMed] [Google Scholar]
  18. J. G. Restrepo, E. Ott, B. R. Hunt. Desynchronization waves and localized instabilities in oscillator arrays. Phys. Rev. Lett., 93 (2004), 114101. [CrossRef] [PubMed] [Google Scholar]
  19. J. G. Restrepo, E. Ott, B. R. Hunt. Spatial patterns of desynchronization bursts in networks. Phys. Rev. E, 69 (2004), 066215. [CrossRef] [MathSciNet] [Google Scholar]
  20. N. Strelkowa, M. Barahona. Transient dynamics around unstable periodic orbits in the generalized repressilator model. Chaos, 21 (2011), 2011. [CrossRef] [Google Scholar]
  21. A. Takamatsu, R. Tanaka, H. Yamada, T. Nakagaki, T. Fujii, I. Endo. Spatiotemporal symmetry in rings of coupled biological oscillators of physarum plasmodial slime mold. Phys. Rev. Lett., 87 (2001), 078102. [CrossRef] [PubMed] [Google Scholar]
  22. L. S. Tuckerman, D. Barkley. Bifurcation analysis of the Eckhaus instability. Physica D, 46 (1990), 57–86. [CrossRef] [MathSciNet] [Google Scholar]
  23. G. Van der Sande, M. C. Soriano, I. Fischer, C. R. Mirasso. Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators. Phys. Rev. E, 77 (2008), 055202. [CrossRef] [Google Scholar]
  24. A. Vishwanathan, G. Bi, H.C. Zeringue. Ring-shaped neuronal networks: a platform to study persistent activity. Lab Chip, 11 (2011), 1081–8. [CrossRef] [PubMed] [Google Scholar]
  25. I. Waller, R. Kapral. Spatial and temporal structure in systems of coupled nonlinear oscillators. Phys. Rev. A, 30 (1984), 2047–2055. [CrossRef] [Google Scholar]
  26. S. Yanchuk, M. Wolfrum. Destabilization patterns in chains of coupled oscillators. Phys. Rev. E, 77 (2008), 026212. [CrossRef] [MathSciNet] [Google Scholar]
  27. W. Zou, M. Zhan. Splay states in a ring of coupled oscillators: From local to global coupling. SIAM J. Appl. Dyn. Syst., 8 (2009), 1324–1340. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.