Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 5, 2013
Page(s) 190 - 205
Published online 17 September 2013
  1. A. A. Abrikosov. On the magnetic properties of superconductors of the second group. J. Explt. Theoret. Phys. (USSR) 32 (1957), 1147–1182. [Google Scholar]
  2. A. Aftalion, X. Blanc, F. Nier. Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates. J. Funct. Anal. 241 (2006), 661–702. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Aftalion, S. Serfaty. Lowest Landau level approach in superconductivity for the Abrikosov lattice close to Hc2. Selecta Math. (N.S.) 13 (2007), 183–202. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. V. Alfors. Complex analysis. McGraw-Hill, New York, 1979. [Google Scholar]
  5. Y. Almog. On the bifurcation and stability of periodic solutions of the Ginzburg-Landau equations in the plane. SIAM J. Appl. Math. 61 (2000), 149–171. [CrossRef] [Google Scholar]
  6. Y. Almog, Abrikosov lattices in finite domains. Commun. Math. Phys. 262 (2006), 677-702. [Google Scholar]
  7. A. Ambrosetti, G. Prodi. A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge, 1993. [Google Scholar]
  8. E. Barany, M. Golubitsky, J. Turski. Bifurcations with local gauge symmetries in the Ginzburg-Landau equations. Phys. D 56 (1992), 36–56. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.S. Berger, Y. Y. Chen. Symmetric vortices for the nonlinear Ginzburg-Landau equations of superconductivity, and the nonlinear desingularization phenomenon. J. Fun. Anal. 82 (1989) 259-295. [CrossRef] [Google Scholar]
  10. S. J. Chapman. Nucleation of superconductivity in decreasing fields. European J. Appl. Math. 5 (1994), 449–468. [MathSciNet] [Google Scholar]
  11. S. J. Chapman, S. D. Howison, J. R. Ockedon. Macroscopic models of superconductivity. SIAM Rev. 34 (1992), 529–560. [CrossRef] [MathSciNet] [Google Scholar]
  12. Q. Du, M. D. Gunzburger, J. S. Peterson. Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34 (1992), 54–81. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Dutour. Phase diagram for Abrikosov lattice. J. Math. Phys. 42 (2001), 4915–4926. [CrossRef] [Google Scholar]
  14. M. Dutour. Bifurcation vers l’état d’Abrikosov et diagramme des phases. Thesis Orsay, [Google Scholar]
  15. G. Eilenberger, Zu Abrikosovs Theorie der periodischen Lösungen der GL-Gleichungen für Supraleiter 2. Z. Physik 180 (1964), 32–42. [Google Scholar]
  16. S. Fournais, B. Helffer. Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and their Applications, vol. 77, Birkhäuser, 2010. [Google Scholar]
  17. S. Gustafson, I.M. Sigal. The stability of magnetic vortices. Comm. Math. Phys. 212 (2000) 257-275. [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Gustafson, I. M. Sigal. Mathematical Concepts of Quantum Mechanics. Springer, 2006. [Google Scholar]
  19. S. J. Gustafson, I. M. Sigal, T. Tzaneteas. Statics and dynamics of magnetic vortices and of Nielsen-Olesen (Nambu) strings. J. Math. Phys. 51, 015217 (2010). [CrossRef] [Google Scholar]
  20. A. Jaffe, C. Taubes. Vortices and Monopoles: Structure of Static Gauge Theories. Progress in Physics 2. Birkhäuser, Boston, Basel, Stuttgart, 1980. [Google Scholar]
  21. W.H. Kleiner, L. M. Roth, S. H. Autler. Bulk solution of Ginzburg-Landau equations for type II superconductors: upper critical field region. Phys. Rev. 133 (1964), A1226–A1227. [CrossRef] [Google Scholar]
  22. G. Lasher. Series solution of the Ginzburg-Landau equations for the Abrikosov mixed state. Phys. Rev. 140 (1965), A523–A528. [CrossRef] [Google Scholar]
  23. S. Nonnenmacher, A. Voros. Chaotic eigenfunctions in phase space. J. Statist. Phys. 92 (1998), 431–518. [CrossRef] [MathSciNet] [Google Scholar]
  24. F. Odeh, Existence and bifurcation theorems for the Ginzburg-Landau equations. J. Math. Phys. 8 (1967), 2351–2356. [CrossRef] [Google Scholar]
  25. Yu. N. Ovchinnikov. Structure of the supercponducting state near the critical fiel Hc2 for values of the Ginzburg-Landau parameter κ close to unity. JETP. 85 (4) (1997), 818–823. [CrossRef] [Google Scholar]
  26. J. Rubinstein. Six Lectures on Superconductivity. Boundaries, interfaces, and transitions (Banff, AB, 1995), 163–184, CRM Proc. Lecture Notes, 13, Amer. Math. Soc., Providence, RI, 1998. [Google Scholar]
  27. E. Sandier, S. Serfaty. Vortices in the Magnetic Ginzburg-Landau Model. Progress in Nonlinear Differential Equations and their Applications, vol.l 70, Birkhäuser, 2007. [Google Scholar]
  28. P. Takáč. Bifurcations and vortex formation in the Ginzburg-Landau equations. Z. Angew. Math. Mech. 81 (2001), 523–539. [Google Scholar]
  29. T. Tzaneteas, I. M. Sigal. Abrikosov lattice solutions of the Ginzburg-Landau equations. Contemporary Mathematics 535, 195–213, 2011. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.