Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 6, 2013
Ecology
Page(s) 107 - 129
DOI https://doi.org/10.1051/mmnp/20138608
Published online 28 November 2013
  1. E. Ahmed, S.A. Hegazi. On some variants of dynamical systems. Chaos Soliton. Fract., 12 (2001), No. 11, 2003–2008. [Google Scholar]
  2. P. Auger. Dynamics and thermodynamics in hierarchically organized systems. Pergamon Press, Oxford, 1989. [Google Scholar]
  3. P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez, T. Nguyen-Huu. Aggregation of variables and applications to population dynamics. In: P. Magal, S. Ruan (Eds.). Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics 1936, Mathematical Biosciences Subseries, Springer Verlag, Berlin, 2008, 209–263. [Google Scholar]
  4. P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez, L. Sanz. Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life. Rev., 5 (2008), No. 2, 79–105. [Google Scholar]
  5. P. Auger, J.-C. Poggiale. Aggregation and emergence in systems of ordinary differential equations. Math. Comput. Model., 27 (1998), No. 4, 1–21. [CrossRef] [Google Scholar]
  6. P. Auger, J.-C. Poggiale, E. Sánchez. A review on spatial aggregation methods involving several time scales. Ecol. Complex., 10 (2012), No. 1, 12–25. [CrossRef] [Google Scholar]
  7. P. Auger, R. Roussarie. Complex ecological models with simple dynamics: From individuals to populations. Acta Biotheor., 42 (1994), No. 2-3, 111–136. [CrossRef] [Google Scholar]
  8. R. Bravo de la Parra, P. Auger, E. Sánchez. Aggregation methods in discrete models. J. Biol. Syst., 3 (1995), No. 2, 603–612. [CrossRef] [Google Scholar]
  9. R. Bravo de la Parra, E. Sánchez, O. Arino, P. Auger. A Discrete Model with Density Dependent Fast Migration. Math. Biosci., 157 (1999), No. 1, 91–110. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. R. Bravo de la Parra, E. Sánchez, P. Auger. Time scales in density dependent discrete models. J. Biol. Syst., 5 (1997), No. 1, 111–129. [CrossRef] [Google Scholar]
  11. H. Caswell. Matrix Population Models: Construction, Analysis and Interpretation, second ed. Sinauer Associates Inc., Sunderland, 2001. [Google Scholar]
  12. J.M. Cushing. An Introduction to Structured Population Dynamics. SIAM, Philadelphia, 1998. [Google Scholar]
  13. E. Dubreuil, P. Auger, J.M. Gaillard, M. Khaladi. Effect of aggressive behavior on age-structured population dynamics. Ecol. Model., 193 (2006), No. 3-4, 777–786. [CrossRef] [Google Scholar]
  14. N. Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows. Indiana U. Math. J., 21 (1972), No. 3, 193–226. [Google Scholar]
  15. J. Hofbauer, K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, 1998. [Google Scholar]
  16. Y. Iwasa, V. Andreasen, S. Levin. Aggregation in model ecosystems I: Perfect Aggregation. Ecol. Model., 37 (1987), No. 3-4, 287–302. [CrossRef] [Google Scholar]
  17. Y. Iwasa, S. Levin, V. Andreasen. Aggregation in model ecosystems. II. Approximate Aggregation. J. Math. Appl. Med. Biol., 6 (1989), No. 1, 1–23. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Lett, P. Auger, R. Bravo de la Parra. Migration Frequency and the Persistence of Host-Parasitoid Interactions. J. Theor. Bio., 221 (2003), No. 4, 639–654. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. H. Lischke, T.J. Löffler, P.E. Thornton, N.E. Zimmermann. Up-scaling of biological properties and models to the landscape level. In: F. Kienast, S. Ghosh, O. Wildi (Eds.). A Changing World: Challenges for Landscape Research. Landscape Series 8, Springer Verlag, Berlin, 2007, 273–296. [Google Scholar]
  20. N.K. Luckyanov, Yu.M. Svirezhev, O.V. Voronkova. Aggregation of variables in simulation models of water ecosystems. Ecol. Model., 18 (1983), No. 3-4, 235–240. [CrossRef] [Google Scholar]
  21. M. Marvá, A. Moussaoui, R. Bravo de la Parra, P. Auger. A density dependent model describing age structured population dynamics using hawk-dove tactics. J. Differ. Equ. Appl., 19 (2013), No. 6, 1022–1034. [CrossRef] [Google Scholar]
  22. M. Marvá, E. Sánchez, R. Bravo de la Parra, L. Sanz. Reduction of slow–fast discrete models coupling migration and demography. J. Theor. Biol., 258 (2009), No. 3, 371–379. [CrossRef] [PubMed] [Google Scholar]
  23. M. Marvá. Approximate aggregation on nonlinear dynamical systems. Ph.D. Thesis, Universidad de Alcalá, Spain, 2011. [Google Scholar]
  24. M.G. Neubert, H. Caswell. Density-dependent vital rates and their population dynamic consequences. J. Math. Biol., 41 (2000), No. 2, 103–121. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. T. Nguyen Huu, P. Auger, C. Lett, M. Marvá. Emergence of global behaviour in a host-parasitoid model with density-dependent dispersal in a chain of patches. Ecol. Complex., 5 (2008), No. 1, 9–21. [CrossRef] [Google Scholar]
  26. T. Nguyen Huu, R. Bravo de la Parra, P. Auger. Approximate aggregation of linear discrete models with two time-scales: re-scaling slow processes to the fast scale. J. Differ. Equ. Appl., 17 (2011), No. 4, 621–635. [Google Scholar]
  27. E. Sánchez, R. Bravo de la Parra, P. Auger. Discrete Models with Different Time-Scales. Acta Biotheor., 43 (1995), No. 4, 465–479. [CrossRef] [Google Scholar]
  28. L. Sanz, J.A. Alonso. Approximate Aggregation Methods in Discrete Time Stochastic Population Models. Math. Model. Nat. Phenom., 5 (2010), No. 6, 38–69. [CrossRef] [EDP Sciences] [Google Scholar]
  29. L. Sanz, A. Blasco, R. Bravo de la Parra. Approximate reduction of multi-type Galton-Watson processes with two time scales. Math. Mod. Meth. Appl. S., 13 (2003), No. 4, 491–525. [CrossRef] [MathSciNet] [Google Scholar]
  30. L. Sanz, R. Bravo de la Parra. Variables aggregation in a time discrete linear model. Math. Biosci., 157 (1999), No. 1, 111–146. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  31. L. Sanz, R. Bravo de la Parra. Time scales in stochastic multiregional models. Nonlinear Anal-Real., 1 (2000), No. 1, 89–122. [CrossRef] [MathSciNet] [Google Scholar]
  32. L. Sanz, R. Bravo de la Parra. Time scales in a non autonomous linear discrete model. Math. Mod. Meth. Appl. S., 11 (2001), No. 7, 1203–1235. [CrossRef] [Google Scholar]
  33. L. Sanz, R. Bravo de la Parra, E. Sánchez. Two time scales non-linear discrete models approximate reduction. J. Differ. Equ. Appl., 14 (2008), No. 6, 607–627. [CrossRef] [MathSciNet] [Google Scholar]
  34. E. Seneta. Non-Negative Matrices and Markov Chains. Springer Verlag, New York, 1981. [Google Scholar]
  35. G.W. Stewart, J.I. Guang Sun. Matrix Perturbation Theory. Boston Academic Press, Boston, 1990. [Google Scholar]
  36. A.D. Taylor. Heterogeneity in hostparasitoid interactions: aggregation of risk and the CV2 > 1 rule. Trends Ecol. Evol., 8 (1993), No. 11, 400–405. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.