Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 6, 2013
Page(s) 96 - 106
Published online 28 November 2013
  1. H. Berestycki, F. Hamel, L. Roques. Analysis of the periodically fragmented environment model: II-biological invasions and pulsating travelling fronts. J. Math. Pures Appl. 84 (2005), 1101–1146. [CrossRef] [Google Scholar]
  2. T. de-Camino-Beck, M.A. Lewis. Invasion with stage-structured coupled map lattices: Application to the spread of scentless chamomile. Ecol. Model. 220 (2009), 3394–3403. [CrossRef] [Google Scholar]
  3. C. Dewhirst, F. Lutscher. Dispersal in heterogeneous habitats: thresholds, spatial scales, and approximate rates of spread. Ecology 90 (2009), 1338–1345. [CrossRef] [PubMed] [Google Scholar]
  4. L. Fahrig. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol. Appl. 12 (2002), No.2, 346–353. [Google Scholar]
  5. M.P. Hassell, H.N. Comins, R.M. May. Spatial structure and chaos in insect population dynamics. Nature 353 (1991), 255–258. [CrossRef] [Google Scholar]
  6. P. Kareiva. Influence of Vegetation Texture on Herbivore Populations: Resource Concentration and Herbivore Moviment in R. F. Denno and M. S. McClure (eds.), Variable Plants and Herbivores in Natural and Managed Systems, 259–289. Academic Press, New York, 1983. [Google Scholar]
  7. P. Kareiva.Trivial Movement and Foraging by Crop Colonizers in M. Kogan (ed.) Ecological Theory and Integrated Pest Manegement Practice, 59–82. John Wiley & Sons, New York, 1986. [Google Scholar]
  8. P. Kareiva, G. Odell. Swarms of predators exhibit "preytaxis" if individuals use area-restricted search. Am. Nat. 130 (1987), No.2, 233–270. [CrossRef] [Google Scholar]
  9. K. Kawasaki, N. Shigesada. An integrodifference model for biological invasions in a periodically fragmented environment. Japan. J. Indust. Appl. Math. 24 (2007), 3–15. [CrossRef] [MathSciNet] [Google Scholar]
  10. K. Kawasaki, K. Asano, N. Shigesada. Impact of Directed Movement on Invasive Spread in Periodic Patchy Environments. Bull. Math. Biol. 74 (2012), 1448–1467. [Google Scholar]
  11. T.H. Keitt, M.A. Lewis, R.D. Holt. Allee effects, invasion pinning, and species borders. Am. Nat. 157 (2001), 203–216. [CrossRef] [PubMed] [Google Scholar]
  12. N. Kinezaki, K. Kawasaki, F. Takasu, N. Shigesada. Modeling biological invasions into periodically fragmented environments. Theor. Popul. Biol. 64 (2003), 291–302. [CrossRef] [PubMed] [Google Scholar]
  13. N. Kinezaki, K. Kawasaki, N. Shigesada. Spatial dynamics of invasion in sinusoidally varying environments. Popul. Ecol. 48 (2006) 263-270. [CrossRef] [Google Scholar]
  14. N. Kinezaki, K. Kawasaki, N. Shigesada. The effect of the spatial configuration of habitat fragmentation on invasive spread. Theor. Popul. Biol. 78 (2010), 298–308. [CrossRef] [PubMed] [Google Scholar]
  15. S. A. Levin. The Problem of Pattern and Scale in Ecology. Ecology 73 (1992), No.6, 1943–1967. [CrossRef] [Google Scholar]
  16. M. A. Lewis, G. Schmitz. Biological Invasion of an Organism with Separate Mobile and Stationary States: Modeling and Analysis. Forma 11 (1996), 1–25. [MathSciNet] [Google Scholar]
  17. F. Lutscher, M. A. Lewis, E. McCauley. The effects of heterogeneity on population persistence and invasion in rivers. Bull. Math. Biol. 68 (2006), No.8, 2129–2160. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. V. Méndez, I. Llopis, D. Campos, W. Horsthemke. Extinction and chaotic patterns in map lattices under hostile conditions. Bull. Math. Biol. 72 (2010), 432–443. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. D.C. Mistro, L. A. D. Rodrigues, M. C. Varriale. The Role of Spatial Refuges in Coupled Map Lattice Model for Host-Parasitoid Systems. Bull. Math. Biol. 71 (2009), 1934–1953. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. D.C. Mistro, L.A.D. Rodrigues, S. Petrovskii. Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong Allee effect. Ecol. Comp. 9 (2012), 16–32. [Google Scholar]
  21. D. Mollison. Dependence of epidemic and population velocities on basic parameters. Math. Biosci. 107 (1991), 255–287. [CrossRef] [PubMed] [Google Scholar]
  22. A. Morozov, S. Petrovskii, B.-L. Li. Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. J. theor. Biol. 238 (2006), 18–35. [Google Scholar]
  23. A. Okubo, S.A. Levin. Diffusion and ecological problems. (2nd edn.) Springer, Berlin, 2001. [Google Scholar]
  24. L. A. D. Rodrigues, D. C. Mistro, S. V. Petrovskii. Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space-and time-discrete predator-prey system. Bull. Math. Biol. 73 (2011), 1812–1840. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. L. A. D. Rodrigues, D. C. Mistro, S. V. Petrovskii. Pattern formation in a space- and time-discrete predator-prey system with a strong Allee effect. Theor. Ecol. 5 (2012), 341–362. [CrossRef] [Google Scholar]
  26. L. A. D. Rodrigues, M. C. Varriale, W. A. C. Godoy, D. C. Mistro. Spatiotemporal dynamics of an insect population in response to chemical substances. Ecol. Comp. (2013) accepted. [Google Scholar]
  27. N. Shigesada, K. Kawasaki. Invasion and the range expansion of species: effects of long-distance dispersal. In: Bullock, J., Kenward, R., Hails, R. (Eds.), Dispersal. Blackwell Science, Oxford, pp. 350–373, 2002. [Google Scholar]
  28. N. Shigesada, K. Kawasaki, E. Teramoto. Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30 (1986), 143–160. [CrossRef] [Google Scholar]
  29. N. Shigesada, K. Kawasaki, E. Teramoto. The speeds of traveling frontal waves in Heterogeneous environments. In: Teramoto, E., Yamaguti, M. (Eds.), Mathematical Topics in Population Biology, Morphogenesis and Neurosciences. In: Lecture Notes in Biomathematics, vol. 71. Springer, Berlin, pp. 87–97, 1987. [Google Scholar]
  30. N. Shigesada, K. Kawasaki. Biological Invasions: Theory and Practice. Oxford University Press, 1997 [Google Scholar]
  31. R. W. Van Kirk, M. A. Lewis. Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol. 59 (1997), No.1, 107–137. [CrossRef] [Google Scholar]
  32. H.F. Weinberger. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45 (2002), 511–548. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  33. H.F. Weinberger, K. Kawasaki, N. Shigesada. Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions. J. Math. Biol. 57 (2008), 387–411. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  34. K. A. With. The landscape ecology of invasive spread. Cons. Biol. 16 (2002), 1192–1203. [CrossRef] [Google Scholar]
  35. S.M. White, K.A.J. White. Relating coupled map lattices to integro-difference equations: dispersal-driven instabilities in coupled map lattices. J. Theor. Biol. 235 (2005), 463–475. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.