Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 6, 2013
Ecology
Page(s) 80 - 95
DOI https://doi.org/10.1051/mmnp/20138606
Published online 28 November 2013
  1. W.C. Allee. Animal aggregations: a study in general sociology. Chicago Univ. Press, Chicago, 1931. [Google Scholar]
  2. R. Arditi, Yu. Tyutyunov, A. Morgulis, V. Govorukhin, I. Senina. Directed movement of predators and the emergence of density-dependence in predator-prey models. Theor. Popul. Biol., 59 (2001), No. 3, 207–221. [CrossRef] [PubMed] [Google Scholar]
  3. A.K. Brodsky. Structure, functioning and evolution of the insect wing articulation. Lectures on the XVI Annual Readings in Memory of N.A. Kholodkovsky (1 April, 1988). Nauka, Leningrad, 1989, 3–47. [Google Scholar]
  4. A.K. Brodsky. The evolution of insect flight. Oxford University Press, Oxford, New York, Tokio, 1994. [Google Scholar]
  5. V.N. Cherkashin (1985) Acclimatization of the ragweed leaf beetle Zygogramma Suturalis Fabr. (Coleoptera, Chrysomelidae) in Stavropol Krai and possibilities of its use for control of common ragweed. Summary of PhD thesis (06.01.11 – plant protection). Georgian Research Institute of Plant Protection, Tbilisi, 1985, 24 pp. [in Russian] [Google Scholar]
  6. F. Courchamp, T. Clutton-Brock, B. Grenfell. Inverse density dependence and the Allee effect. Trends Ecol. Evol., 14 (1999), No. 10, 405–410. [Google Scholar]
  7. T. Czárán. Spatiotemporal models of population and community dynamics. Chapman and Hall, London, 1998. [Google Scholar]
  8. L. Edelstein-Keshet. Mathematical models in biology. McGraw-Hill, New York, 1988. [Google Scholar]
  9. C.A. Edmonds, A.S. Lillie, L.L. Cavalli-Sforza. Mutations arising in the wave front of an expanding population. Proc. Nat. Acad. Sci. USA, 101 (2004), 975–979. [CrossRef] [Google Scholar]
  10. B. Facon, L. Crespin, A. Loiseau, E. Lombaert, A. Magro, A. Estoup. Can things get worse when an invasive species hybridizes? The harlequin ladybird Harmonia axyridis in France as a case study. Evol. Appl., 4 (2011), 71–88. [CrossRef] [PubMed] [Google Scholar]
  11. W.F. Fagan, M.A. Lewis, M.G. Neubert, P. Van Den Driessche. Invasion theory and biological control. Ecol. Lett., 5 (2002), No. 1, 148–157. [CrossRef] [Google Scholar]
  12. B. Gard, F. Bretagnolle, F. Dessaint, B. Laitung. Invasive and native populations of common ragweed exhibit strong tolerance to foliar damage. Basic Appl. Ecol., 14 (2013), 28–35. [CrossRef] [Google Scholar]
  13. J. Gascoigne, L. Berec, S. Gregory, F. Courchamp. Dangerously few liaisons: a review of mate-finding Allee effects. Popul. Ecol., 51 (2009), No. 3, 355–372. [CrossRef] [Google Scholar]
  14. E. Gerber, U. Schaffner, A. Gassmann, H.L. Hinz, M. Seier, H. Müller-Schärer. Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past. Weed Res., 51 (2011), 559–573. [CrossRef] [Google Scholar]
  15. R.D. Goeden, L.A. Andres. Three recent successes outside of North America. in Handbook of Biological Control (T.S. Bellows, T.W. Fisher, Eds.). Academic Press, San Diego, CA, USA, 1999, 884–885. [Google Scholar]
  16. V.N. Govorukhin, A.B. Morgulis, Y.V. Tyutyunov. Slow taxis in a predator-prey model. Dokl. Math., 61 (2000), No. 3, 420–422. [Google Scholar]
  17. D. Grünbaum. Using spatially explicit model to characterize foraging performance in heterogeneous landscape. Am. Nat., 151 (1998), No. 2, 97–115. [CrossRef] [PubMed] [Google Scholar]
  18. O. Hallatschek, D.R. Nelson. Gene surfing in expanding populations. Theor. Popul. Biol., 73 (2008), 158–170. [CrossRef] [PubMed] [Google Scholar]
  19. P. Harris. Classical biocontrol of weeds: Its definitions, selection of effective agents, and administrative-political problems. Can. Entomol., 123 (1991), 827–849. [CrossRef] [Google Scholar]
  20. J.H. Hoffmann, V.C. Moran. Assigning success in biological weed control: what do we really mean? in Proceedings of the XII International Symposium on Biological Control of Weeds (M.H. Julien, R. Sforza, M.C. Bon, H.C. Evans, P.E. Hatcher, H.L. Hinz, B.G. Rector, Eds.), CABI, Wallingford, UK, 2008, 687–692. [Google Scholar]
  21. C.B. Huffaker. A comparison of the status of biological control of St. John’s wort in California and Australia. Mushi, 39 (1967), No. suppl., 51–73. [Google Scholar]
  22. J. Igrc, J.C. DeLoach, V. Žlof. Release and establishment of Zygogramma suturalis F. (Coleoptera: Chrysomelidae L.). Biol. Control, 5 (1995), No. 2, 203–208. [CrossRef] [Google Scholar]
  23. V.Y. Ismailov, I.S. Agas’eva. Predaceous stink bug Perillus bioculatus Fabr. A novel view on possibility of acclimatization and perspectives of use. Zashchita i karantin rasteniy, 2 (2010), 30–31. [in Russian] [Google Scholar]
  24. M.N. Julien, M.W. Griffiths. Biological control of weeds: a world catalogue of agents and their target weeds, 4th edn. CABI Publishing, Wallingford, UK, 1998. [Google Scholar]
  25. E.F. Keller, L.A. Segel. Initiation of slide mold aggregation viewed as an instability. J. Theor. Biol., 26 (1970), 399–415. [CrossRef] [PubMed] [Google Scholar]
  26. L. Kiss. Is Puccinia xanthii a suitable biological control agent of Ambrosia artemisiifolia? Biocontrol Sci. Techn., 17 (2007), No. 5, 535–539. [CrossRef] [Google Scholar]
  27. V.A. Kostitzin. Biologie mathématique. Paris, Librairie Armand Colin. 1937. [Google Scholar]
  28. V.A. Kostitzin. Equations diffèrentielles générales du problème de sélection naturelle. C. R. Acad. Sci, 206 (1938), 570–572. [Google Scholar]
  29. V.A. Kostitzin. Sur les coefficients mendeliens d’hérédité. C. R. Acad. Sci, 206 (1938), 883–885. [Google Scholar]
  30. V.A. Kostitzin. Sur les équations diffèrentielles du problème de la sélection mendélienne. C. R. Acad. Sci, 203 (1936), 156–157. [Google Scholar]
  31. O.V. Kovalev. A universal model of the biosphere evolution and the consciousness evolution. International Symposium “Ecosystem Evolution”. Paleontological Institute of the Russian Academy of Sciences, Moscow, 1995, p. 47. [Google Scholar]
  32. O.V. Kovalev. Microevolutioal processes in population of Zygogramma suturalis F. (Coleoptera, Chrisomelidae) introduced from Nort America to the USSR. in: Theoretical Principles of Biological Control of the Common Ragweed (O.V. Kovalev, S.A. Belokobylsky, Eds.). Proceedings of the Zoological Institute. vol. 189. “Nauka” Publishing House, Leningrad Branch, Leningrad, 1989, 139–165. [in Russian] [Google Scholar]
  33. O.V. Kovalev. Spread of adventive plants of Ambrosieae tribe in Eurasia and methods of bilogical control of Ambrosia L. (Asteraceae). in: Theoretical Principles of Biological Control of the Common Ragweed (O.V. Kovalev, S.A. Belokobylsky, Eds.). Proceedings of the Zoological Institute. vol. 189. “Nauka” Publishing House, Leningrad Branch, Leningrad, 1989, 7–23. [in Russian] [Google Scholar]
  34. O.V. Kovalev. The solitary population wave, a physical phenomenon accompanying the introduction of a chrysomelid. in: New Developments in the Biology of Chrysomelidae. (P. Jolivet, Ed.) SPB Academic Publishing bv, The Hague, The Netherlands, 2004, 91–601. [Google Scholar]
  35. O.V. Kovalev, Yu.V. Tyutyunov, L.P. Iljina, S.V. Berdnikov. On the efficacy of introduction of American insects-phytophages of common ragweed (Ambrosia artemisiifolia L.) in the South of Russia. Entomological Review, 92 (2013), 251–264. [in Russian]. [Google Scholar]
  36. O.V. Kovalev, V.V. Vechernin. Description of a new wave process in population with reference to introduction and spread of the leaf beetle Zygogramma suturalis F. (Coleoptera, Chrysomelidae). Entomological Review, 65 (1986), 93–112. [Google Scholar]
  37. O.V. Kovalev, V.V. Vechernin. Discovering and description of the phenomenon of formation of solitary population wave of introduced insects. in: Theoretical Principles of Biological Control of the Common Ragweed (O.V. Kovalev, S.A. Belokobylsky, Eds.). Proceedings of the Zoological Institute. vol. 189. “Nauka” Publishing House, Leningrad Branch, Leningrad, 1989, 105–120. [in Russian] [Google Scholar]
  38. O.V. Kovalev, S.G. Zhilin. (Eds.) Phase transition in biological systems and the evolution of biodiversity. Nuclear Physics Institute Publishing House, St. Petesburg, 2007. [in Russian] [Google Scholar]
  39. R. Lehe, O. Hallatschek, L. Peliti. The rate of beneficial mutations surfing on the wave of a range expansion. PLoS Comput. Biol., 8 (2012), No. 3, e1002447. [CrossRef] [PubMed] [Google Scholar]
  40. M.A. Lewis. Spatial coupling of plant and herbivore dynamics: the contribution of herbivore dispersal to transient and persistent “waves” of damage. Theor. Popul. Biol., 45 (1994), No. 3, 277–312. [CrossRef] [Google Scholar]
  41. L.N. Medvedev. Variability of Zygogramma suturalis F. population introduced to the USSR. in: Theoretical Principles of Biological Control of the Common Ragweed (O.V. Kovalev, S.A. Belokobylsky, Eds.). Proceedings of the Zoological Institute. vol. 189. “Nauka” Publishing House, Leningrad Branch, Leningrad, 1989, 177–181. [in Russian] [Google Scholar]
  42. P.J. Moran, C.J. DeLoach, T.L. Dudley, J. Sanabria. Open field host selection and behavior by tamarisk beetles (Diorhabda spp.) (Coleoptera: Chrysomelidae) in biological control of exotic saltcedars (Tamarix spp.) and risks to non-target athel (T. aphylla) and native Frankenia spp. Biol. Control, 50 (2009), 243–261. [CrossRef] [Google Scholar]
  43. A. Morozov, S. Petrovskii. Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem. B. Math. Biol., 71 (2009), 863–887. [CrossRef] [Google Scholar]
  44. W.W. Murdoch, J. Chesson, P.L. Chesson. Biological control in theory and practice. Am. Nat., 125 (1985), No. 3, 344–366. [CrossRef] [Google Scholar]
  45. J.D. Murray. Mathematical biology. Springer-Verlag, New York, 1993. [Google Scholar]
  46. J.D. Murray. Mathematical biology II: Spatial models and biomedical applications. Springer-Verlag, New York, 2003. [Google Scholar]
  47. W. Nentwig (Ed.). Biological invasions. Ser. in Ecological studies. vol. 193. Springer, Berlin, 2007. [Google Scholar]
  48. A. Okubo, S.A. Levin. Diffusion and ecological problems: modern perspectives. Springer, New York, 2001. [Google Scholar]
  49. B. Palmer, R.E.C. McFadyen. Ambrosia artemisiifolia L. — annual ragweed. in Biological control of weeds in Australia (M.H. Julien, R.E.C. McFadyen, J.M. Cullen, Eds.) CSIRO, Collingwood, Australia, 2012, 52–59. [Google Scholar]
  50. S.V. Petrovskii, B.L. Li. Exactly solvable models of biological invasion. CRC Press, Boca Raton, 2006. [Google Scholar]
  51. S.Y. Reznik, I.A. Spasskaya, M.Y. Dolgovskaya, M.G. Volkovitsh, V.F. Zaitzev. The ragweed leaf beetle Zygogramma suturalis F. (Coleoptera: Chrysomelidae) in Russia: current distribution, abundance and implication for biological control of common ragweed, Ambrosia artemisiifolia L. in Proceedings of the XII International Symposium on Biological Control of Weeds (M.H. Julien R. Sforza, M.C. Bon, H.C. Evans, P.E. Hatcher, H.L. Hinz, B.G. Rector, Eds.), CABI, Wallingford, UK, 2008, 614–619. [Google Scholar]
  52. P.M. Room. Ecology of a simple plant-herbivore system. Biological control of Salvinia. Trends Ecol. Evol., 5, (1990), No. 3, 74–79. [CrossRef] [Google Scholar]
  53. P.M. Room, P.A. Thomas. Nitrogen and establishment of a beetle for biological control of the floating weed Salvinia in Papua New Guinea. J. Appl. Ecol., 22 (1985), 139–156. [CrossRef] [Google Scholar]
  54. L. Roques, J. Garnier, F. Hamel, E.K. Klein. Allee effect promotes diversity in traveling waves of colonization. Proc. Nat. Acad. Sci. USA, 109 (2012), No. 23, 8828–8833. [CrossRef] [MathSciNet] [Google Scholar]
  55. N. Sapoukhina, Yu. Tyutyunov, R. Arditi. The role of prey-taxis in biological control: a spatial theoretical model. Am. Nat., 162 (2003), No. 1, 61–76. [CrossRef] [PubMed] [Google Scholar]
  56. W.E. Schiesser. The numerical method of lines: integration of partial differential equations. Academic Press, San Diego, 1991. [Google Scholar]
  57. E. Scholze, H. Pichler, H. Heran. Zur Entfernungsschätzung der Bienen nach dem Kraftaufwand. Naturwissenschaften, 51 (1964), 69–70. [CrossRef] [Google Scholar]
  58. S.O. Sergievskii. Choosing of partner for copulation in populations of Zygogramma suturalis F. in: Theoretical Principles of Biological Control of the Common Ragweed (O.V. Kovalev, S.A. Belokobylsky, Eds.). Proceedings of the Zoological Institute. vol. 189. “Nauka” Publishing House, Leningrad Branch, Leningrad, 1989, 173–176. [in Russian] [Google Scholar]
  59. P.A. Stephens, W.J. Sutherland. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol., 14 (1999), 401–405. [CrossRef] [Google Scholar]
  60. H.L. Sweetman. The Principles of Biological Control. W.C. Brown Co, Dubuque, Iowa, 1958. [Google Scholar]
  61. R. Tourniaire, A. Ferran, L. Giuge, C. Piotte, J. Gambier. A natural flightless mutation in the ladybird, Harmonia axyridis. Entomologia Experimentalis et Applicata, 96 (2000), 33–38. [CrossRef] [Google Scholar]
  62. Yu.V. Tyutyunov, N.Yu. Sapoukhina, I.N. Senina, R. Arditi. Explicit model for searching behavior of predator. Zhurnal Obshchei Biologii, 63 (2002), No. 2, 137–148. [in Russian] [PubMed] [Google Scholar]
  63. Yu. Tyutyunov, I. Senina, R. Arditi. Clustering due to acceleration in the response to population gradient: a simple self-organization model. Am. Nat., 164 (2004), No. 6, 722–735. [CrossRef] [PubMed] [Google Scholar]
  64. Yu. Tyutyunov, L. Titova, R. Arditi. A minimal model of pursuit-evasion in a predator-prey system. Math. Model. Nat. Phenom., 2 (2007), No. 4, 122–134. [CrossRef] [EDP Sciences] [Google Scholar]
  65. Yu. Tyutyunov, L. Titova, R. Arditi. Predator interference emerging from trophotaxis. Ecol. Complex., 5 (2008), No. 1, 48–58. [CrossRef] [Google Scholar]
  66. Yu.V. Tyutyunov, A.D. Zagrebneva, F.A. Surkov, A.I. Azovsky. Microscale patchiness of the distribution of copepods (Harpacticoida) as a result of trophotaxis. Biophysics, 54 (2009), No. 3, 355–360. [CrossRef] [Google Scholar]
  67. Yu. Tyutyunov, E. Zhadanovskaya, D. Bourguet, R. Arditi. Landscape refuges delay resistance of the European corn borer to Bt-maize: a demo-genetic dynamic model. Theor. Popul. Biol., 74 (2008), 138–146. [CrossRef] [PubMed] [Google Scholar]
  68. Yu.V. Tyutyunov, E.A. Zhadanovskaya, R. Arditi, A.B. Medvinsky. A spatial model of the development of pest resistance to a transgenic insecticidal crop: European corn borer on Bt maize. Biophysics, 52 (2007), No. 1, 52–67. [CrossRef] [Google Scholar]
  69. T.C.R. White. The inadequate environment: nitrogen and the abundance of animals. Springer, Berlin, 1993. [Google Scholar]
  70. T.C.R. White. Why does the world stay green?: nutrition and survival of plant-eaters. CSIRO Publishing, Collingwood, Australia, 2005. [Google Scholar]
  71. T. Yamanaka, K. Tanaka, A. Otuka, O.N. Bjørnstad. Detecting spatial interactions in the ragweed (Ambrosia artemissifolia L.) and the ragweed beetle (Ophraella communaLeSage) populations. Ecol. Res., 22 (2007), 185–196. [CrossRef] [Google Scholar]
  72. S.-R. Zhou, Y.-F. Liu, G. Wang. The stability of predator-prey systems subject to the Allee effects. Theor. Popul. Biol., 67 (2005), 23–31. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.