Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 6, 2013
Page(s) 143 - 164
Published online 28 November 2013
  1. P. Aguirre, E. González-Olivares, E. Sáez. Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect. SIAM J. Appl. Math., 69(5) (2009), 1244-1269. [CrossRef] [Google Scholar]
  2. E. Angulo, G. W. Roemer, L. Berec, J. Gascoigne, F. Courchamp. Double Allee effects and extinction in the island fox. Conser. Biol., 21 (2007), 1082-1091. [CrossRef] [Google Scholar]
  3. D. K. Arrowsmith, C. M. Place. Dynamical System. Differential equations, maps and chaotic behaviour, Chapman and Hall, London, 1992. [Google Scholar]
  4. A. D. Bazykin, F. S. Berezovskaya, A. S. Isaev, R. G. Khlebopros, Dynamics of forest insect density: Bifurcation approach, J. Theor. Biol., 186 (1997), 267-278. [CrossRef] [PubMed] [Google Scholar]
  5. A.D. Bazykin. Nonlinear dynamics of interacting populations. Nonlinear Sciences Series A Vol. 11, World Scientific, Singapore, 1998. [Google Scholar]
  6. L. Berec, E. Angulo, F. Courchamp. Multiple Allee effects and population management. Trends Ecol. Evol., 22 (2007), 185-191. [CrossRef] [PubMed] [Google Scholar]
  7. F. Berezovskaya, G. Karev, R. Arditi. Parametric analysis of the ratio-dependent predator-prey model. J. Math. Biol., 43 (2001), 221-246. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. D. S. Boukal, L. Berec. Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters. J. Theor. Biol., 218 (2002), 375-394. [CrossRef] [PubMed] [Google Scholar]
  9. D. S. Boukal, M. W. Sabelis, L. Berec. How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theor. Popul. Biol., 72 (2007), 136-147. [CrossRef] [PubMed] [Google Scholar]
  10. K. S. Cheng. Uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Anal., 12 (1981), 541-548. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. Chicone, Ordinary differential equations with applications (2nd edition). Texts in Applied Mathematics 34, Springer, New York, 2006. [Google Scholar]
  12. C. W. Clark. Mathematical models in the economics of renewable resources. SIAM Rev., 21(1) (1979), 81-99. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. W. Clark, Mathematical Bioeconomics: The optimal management of renewable resources (2nd edition), John Wiley and Sons, New York, 1990. [Google Scholar]
  14. C. W. Clark. The Worldwide Crisis in Fisheries: Economic Model and Human Behavior. Cambridge University Press, Cambridge, 2007. [Google Scholar]
  15. C. S. Coleman. Hilbert’s 16th problem: How many cycles?. In: M. Braun, C. S. Coleman and D. Drew (Eds.) Differential Equations Models, Springer-Verlag, New York, (1983), 279-297. [Google Scholar]
  16. J. B. Collings, D. J. Wollkind. A global analysis of a temperature-dependent model system for a mite predator-prey interaction. SIAM J. Appl. Math., 50 (1990), 1348-1372. [CrossRef] [Google Scholar]
  17. E. D. Conway, J. A. Smoller. Global Analysis of a system of predator-prey equations. SIAM J. Appl. Math., 46 (1986), 630-642. [CrossRef] [Google Scholar]
  18. F. Courchamp, T. Clutton-Brock, B. Grenfell. Inverse density dependence and the Allee effect. Trends Ecol. Evol., 14(10) (1999), 405-410. [Google Scholar]
  19. F. Courchamp, L. Berec, J. Gascoigne. Allee effects in Ecology and Conservation. Oxford University Press, Oxford, 2007. [Google Scholar]
  20. F. Dumortier, J. Llibre, J. C. Artés.Qualitative theory of planar differential systems. Springer, Berlin, 2006. [Google Scholar]
  21. J. D. Flores, J. Mena-Lorca, B. González-Yañez, E. González-Olivares. Consequences of depensation in a Smithś bioeconomic model for open-access fishery. In (R. Mondaini and R. Dilao Eds.) Proceedings of International Symposium on Mathematical and Computational Biology. E-papers Serviços Editoriais Ltda., Río de Janeiro, (2007), 219-232. [Google Scholar]
  22. H. I. Freedman, Deterministic mathematical model in Population Ecology, Marcel Dekker, New York, 1980. [Google Scholar]
  23. G. F. Fussmann, B. Blasius. Community response to enrichment is highly sensitive to model structure. Biol. Lett. 1 (2004), 9-12. [Google Scholar]
  24. V. Gaiko. Global bifurcation Theory and Hilbertś sexteenth problem. Kluwer Academic Press, Boston, 2003. [Google Scholar]
  25. J. C. Gascoigne, R. Lipcius. Allee effects driven by predation. J. Appl. Ecol. 41 (2004), 801-810. [CrossRef] [Google Scholar]
  26. G. F. Gause. The Struggle for Existence. Dover Publications Inc, London, 1971. [Google Scholar]
  27. W. M. Getz. A hypothesis regarding the abruptness of density dependence and the growth rate populations. Ecology 77 (1996), 2014-2026. [CrossRef] [Google Scholar]
  28. L. Ginzburg, M. Colyvan. Ecological Orbits: How Planets Move and Populations Grow. Oxford University Press, Oxford, 2004. [Google Scholar]
  29. B-S. Goh, Management and Analysis of Biological Populations, Elsevier Scientific Publishing Company, Amsterdam, 1980. [Google Scholar]
  30. E. González-Olivares, R. Ramos-Jiliberto. Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166 (2003), 135-146. [CrossRef] [Google Scholar]
  31. E. González-Olivares, B. González-Yañez, E. Sáez, I. Szantó N. On the number of limit cycles in a predator prey model with non-monotonic functional response. Discrete Cont. Dyn-B., 6 (2006), 525-534. [Google Scholar]
  32. E. González-Olivares, B. González-Yañez, J. Mena-Lorca, R. Ramos-Jiliberto. Modelling the Allee effect: are the different mathematical forms proposed equivalents? In R. Mondaini (Ed.) Proceedings of International Symposium on Mathematical and Computational Biology. E-papers Serviços Editoriais Ltda., Río de Janeiro, (2007), 53-71. [Google Scholar]
  33. E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma, J. D. Flores. Dynamical complexities in the Leslie-Gower predator-prey model considering a simple form to the Allee effect on prey. Appl. Math. Model., 3 (2011), 366-381. [CrossRef] [Google Scholar]
  34. E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma, R. Ramos-Jiliberto. Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the Allee effect on prey. Nonlinear Anal-Real., 12 (2011), 2931-2942. [CrossRef] [MathSciNet] [Google Scholar]
  35. E. González-Olivares, A. Rojas-Palma. Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey. Bull. Math. Biol., 73 (2011), 1378-1397. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. E. González-Olivares, A. Rojas-Palma. Limit cycles in a Gause type predator-prey model with sigmoid functional response and weak Allee effect on prey. Math. Method App. Sci. 35 (2012), 963-975. [CrossRef] [Google Scholar]
  37. E. González-Olivares, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma, J. D. Flores, Consequences of double Allee effect on the number of limit cycles in a predator-prey model, Comp. Math. App., 62 (2011), 3449-3463. [CrossRef] [Google Scholar]
  38. B. González-Yañez, E. González-Olivares, Consequences of Allee effect on a Gause type predator-prey model with nonmonotonic functional response, In R. Mondaini (Ed.) Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology, E-Papers Serviços Editoriais Ltda, Río de Janeiro, Vol. 2 (2004), 358-373. [Google Scholar]
  39. K. Hasík. Uniqueness of limit cycle in the predator-prey system with symmetric prey isocline. Math. Biosci., 164 (2000), 203-215. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  40. K. Hasík. On a predator-prey system of Gause type, J. Math. Biol., 60 (2010), 59-74. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  41. M. Hesaaraki, S. M. Moghadas. Existence of limit cycles for predator-prey systems with a class of functional responses. Ecol. Model. 142 (2001), 1-9. [CrossRef] [Google Scholar]
  42. F. M. Hilker, M. Langlais, H. Malchow. The Allee effect and infectious diseases: Extinction, multistability, and the (dis-)appearance of oscillations. Am. Nat., 173(1) (2009), 72-88. [Google Scholar]
  43. X-C. Huang, Y. Wang, L. Zhu. One and three limit cycles in a cubic predator-prey system. Math. Method App. Sci., 30 (2007), 501-511. [Google Scholar]
  44. T-W. Hwang. Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response. J. Math. Anal. Appl., 290 (2004), 113-122. [CrossRef] [Google Scholar]
  45. S-B. Hsu, T-W. Hwang, Y. Kuang. Global dynamics of a predator-prey model with Hassell-Varley type functional response. Discrete Cont. Dyn. S., 10 (2008), 857-871. [CrossRef] [Google Scholar]
  46. C. Hui, Z. Li. Distribution patterns of metapopulation determined by Allee effects. Popul. Ecol., 46 (2004), 55-63. [Google Scholar]
  47. M. Kot, Elements of Mathematical Ecology, Cambridge University Press 2001. [Google Scholar]
  48. Y. Kuang, H. I. Freedman, Uniqueness of limit cycles in Gause type models of predator-prey systems, Math. Biosci. 88 (1988) 67-84. [Google Scholar]
  49. Y. A. Kuznetsov, Elements of Applied Bifurcation Theory (2nd Edition), Springer-Verlag, New York, 1998. [Google Scholar]
  50. Y. Lamontagne, C. Coutu, C. Rousseau. Bifurcation analysis of a predator-prey system with generalised Holling type III functional response. J. Dyn. Differ. Equ., 20(3) (2008), 535-571. [Google Scholar]
  51. M. Liermann, R. Hilborn. Depensation: evidence, models and implications. Fish Fish 2 (2001), 33-58. [CrossRef] [Google Scholar]
  52. D. Ludwig, D. D. Jones, C. S. Holling. Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol., 36 (1978), 204-221. [Google Scholar]
  53. R. M. May, Stability and complexity in model ecosystems(2nd Edition), Princeton University Press, Princeton, NJ, 2001. [Google Scholar]
  54. H. Meneses-Alcay, E. González-Olivares. Consequences of the Allee effect on Rosenzweig-MacArthur predator-prey model. In R. Mondaini (ed.) Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology BIOMAT 2003. E-papers Serviços Editoriais Ltda., Río de Janeiro, Volumen 2 (2004), 264-277. [Google Scholar]
  55. S. J. Middlemas, T. R. Barton, J. D. Armstrong, P. M. Thompson. Functional and aggregative responses of harbour seals to changes in salmonid abundance. P. Roy. Soc. B., 273 (2006), 193-198. [CrossRef] [Google Scholar]
  56. S. M. Moghadas, B. D. Corbett. Limit cycles in a generalized Gause-type predator-prey model. Chaos Solitons Fract., 37 (2008), 1343-1355. [CrossRef] [Google Scholar]
  57. A. Morozov, E. Arashkevich. Patterns of zooplankton functional response in communities with vertical heterogeneity: a model study. Math. Mod. Nat. Phenom., 3(3) (2008) 131-148. [CrossRef] [EDP Sciences] [Google Scholar]
  58. W. W. Murdoch, C. J. Briggs, R. M. Nisbet. Consumer-Resources Dynamics. Monographs in Population Biology 36, Princeton University Press, Princeton, 2003. [Google Scholar]
  59. M. R. Myerscough, M. J. Darwen, W. L. Hogarth. Stability, persistence and structural stability in a classical predator-prey model. Ecol. Model., 89 (1996) 31-42. [CrossRef] [Google Scholar]
  60. L. Perko. Differential Equations and Dynamical Systems (3rd. Edition). Springer-Verlag, New York, 2001. [Google Scholar]
  61. A. Rojas-Palma, E. González-Olivares, B. González-Yañez, Metastability in a Gause type predator-prey models with sigmoid functional response and multiplicative Allee effect on prey, In R. Mondaini (Ed.) Proceedings of International Symposium on Mathematical and Computational Biology, E-papers Serviços Editoriais Ltda., Río de Janeiro, (2007), 295-321. [Google Scholar]
  62. G. Seo and M. Kot. A comparison of two predator-prey models with Holling’s type I functional response. Math. Biosci., 212 (2008) 161-179. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  63. M. Sen, M. Banerjee, A. Morozov. Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect. Ecol. Complex., 11 (2013), 12-27. [CrossRef] [Google Scholar]
  64. P. D. Spencer, J. S. Collie. A simple predator-prey model of exploited marine fish populations incorporating alternative prey. ICES J. Mar. Sci., 53 (1995), 615-628. [CrossRef] [Google Scholar]
  65. P. A. Stephens, W. J. Sutherland. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol., 14 (1999), 401-405. [CrossRef] [Google Scholar]
  66. P. A. Stephens, W. J. Sutherland, R. P. Freckleton. What is the Allee effect?. Oikos 87 (1999), 185-190. [CrossRef] [Google Scholar]
  67. J. Sugie, K. Miyamoto, K. Morino. Absence of limits cycle of a predator-prey system with a sigmoid functional response. Appl. Math. Lett., 9 (1996), 85-90. [CrossRef] [Google Scholar]
  68. J. Sugie, R. Kohno, R. Miyazaki, On a predator-prey system of Holling type. P. Am. Math. Soc., 125 (1997), 2041-2050. [Google Scholar]
  69. R. J. Taylor. Predation. Chapman and Hall, New York,1984. [Google Scholar]
  70. P. Turchin. Complex population dynamics. A theoretical/empirical synthesis. Mongraphs in Population Biology 35 Princeton University Press, Princeton, NJ, 2003. [Google Scholar]
  71. G. A. K. van Voorn, L. Hemerik, M. P. Boer, B. W. Kooi. Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. Math. Biosci., 209 (2007), 451-469. [CrossRef] [PubMed] [Google Scholar]
  72. K. Vilches-Ponce, E. González-Olivares. A Gause-type predator-prey model with a non-differentiable functional response. (2013) submitted. [Google Scholar]
  73. M-H. Wang, M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Bioci., 171 (2001), 83-97. [Google Scholar]
  74. J. Wang, J. Shi, J. Wei. Predator-prey system with strong Allee effect in prey. J. Math. Biol., 62 (2011), 291-331. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  75. S. Wolfram Research, Mathematica: A System for Doing Mathematics by Computer (2nd edition), Wolfram Research, Addison Wesley 1991. [Google Scholar]
  76. D. J. Wollkind, J. B. Collings, J. A. Logan. Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees. Bull. Math. Biol., 50(4) (1988), 379-109. [CrossRef] [Google Scholar]
  77. D. Xiao, Z. Zhang. On the uniqueness and nonexistence of limit cycles for predator-prey systems. Nonlinearity 16 (2003), 1185-1201. [CrossRef] [Google Scholar]
  78. J. Zu, M. Mimura. The impact of Allee effect on a predator-prey system with Holling type II functional response. Appl. Math. Comp., 217 (2010), 3542-3556. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.