Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 6, 2013
Page(s) 25 - 44
Published online 28 November 2013
  1. S. D. Archer, C. E. Stelfox-Widdicombe, P. H. Burkill, G. Malin. A dilution approach to quantify the production of dissolved dimethylsulphoniopropionate and dimethylsulphide due to microzooplankton herbivory. Aquat. Microb. Ecol., 23 (2001), 131–145. [CrossRef] [Google Scholar]
  2. A. Beckmann, I. Hense. Beneath the surface: characteristics of oceanic ecosystems under weak mixing conditions — a theoretical investigation. Prog. Oceanogr., 75 (2007), 771–796. [CrossRef] [Google Scholar]
  3. M. N. Breckels, N. W. F. Bode, E. A. Codling, M. Steinke. The effect of grazing-mediated DMS production on the behaviour of the copepod Calanus helgolandicus. Mar. Drugs, 11 (2013), 2486–2500. [CrossRef] [PubMed] [Google Scholar]
  4. R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326 (1987), 655–661. [CrossRef] [Google Scholar]
  5. J. Chattopadhyay, R. R. Sarkar, S. Mandal. Toxin producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling. J. Theor. Biol., 215 (2002), 333-344. [CrossRef] [Google Scholar]
  6. T. J. Cowles, R. A. Desiderio, M. E. Carr. Small scale planktonic structure: persistence and trophic consequences. J. Oceanogr., 11 (1998), 4–9. [CrossRef] [Google Scholar]
  7. G. B. Cunningham, V. Strauss, P. G. Ryan. African penguins (Spheniscus demersus) can detect dimethyl sulphide, a prey related cue. J. Exp. Biol., 211 (2008), 3123–3127. [CrossRef] [PubMed] [Google Scholar]
  8. U. Dieckmann. Adaptive dynamics of pathogen-host interactions. In: Dieckmann, U, Metz, JAJ, Sabelis, M.W., Sigmund, K. (Eds.), Adaptive Dynamics of Infectious Diseases:In Pursuit of Virulence Management, Cambridge University Press, (2002), pp. 39–59. [Google Scholar]
  9. C. A. Edwards, H. P. Batchelder, T. M. Powell. Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system. J. Plankton Res., 22 (2000), 1619–1648. [Google Scholar]
  10. C. A. Edwards, T. A. Powell, H. P. Batchelder. The stability of an NPZ model subject to realistic levels of vertical mixing. J. Mar. Res., 58 (2000), 37–60. [Google Scholar]
  11. A. M. Edwards, J. Brindley. Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol., 61 (1999), 303–339. [Google Scholar]
  12. K. D. Farnsworth, J. A. Beecham. How do grazers achieve their distribution? A continuum of models from random diffusion to the ideal free distribution using biased random walks. Am. Nat., 153 (1999), 509–526. [CrossRef] [PubMed] [Google Scholar]
  13. A. Gabric, N. Murray, L. Stone, M. Kohl. Modelling the production of dimethylsulfide during a phytoplankton bloom. J. Geophys. Res., 98 (1993), 22805–22816. [CrossRef] [Google Scholar]
  14. S.A.H. Geritz, E. Kisdi, G. Meszena, J.A.J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, (1998), 35–57. [CrossRef] [Google Scholar]
  15. C. W. Gill, S. A. Poulet. Responses of copepods to dissolved free amino acids. Mar. Ecol. Prog. Ser., 43 (1988), 269–276. [CrossRef] [Google Scholar]
  16. J. Giske, R. Rosland, J. Berntsen, Ø. Fiksen. Ideal free distribution of copepods under predation risk. Ecol. Model., 95 (1997), 45–59. [CrossRef] [Google Scholar]
  17. F.C. Hansen, M. Reckermann, W.C.M. Klein Breteler. Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar. Ecol. Prog. Ser., 102 (1993), 51–57. [CrossRef] [Google Scholar]
  18. M. E. Hay. Marine chemical ecology: chemical signals and cues structure marine populations, communities and ecosystems. Annu. Rev. Mar. Sci., 1 (2009), 193–212. [CrossRef] [Google Scholar]
  19. C. S. Holling. The components of predation as revealed by a study of small mammal predation on the European pine sawfly. Can. Entomol., 91 (1959), 293–320. [CrossRef] [Google Scholar]
  20. X. Irigoien, K. J. Flynn, R. P. Harris. Plankton blooms: a ’loophole’ in microzooplankton grazing impact? J. Plankton Res., 27 (2005), 313–321. [CrossRef] [Google Scholar]
  21. A. Kharab, R. B. Guenther. An Introduction to Numerical Methods: A MATLAB Approach. Third edition. CRC Press, Boca Raton, 2012. [Google Scholar]
  22. T. Kiørboe. A Mechanistic Approach to Plankton Ecology. Princeton University Press, NJ, 2008. [Google Scholar]
  23. T. Kiørboe, E. Bagøien, U. H. Thygesen. Blind dating—mate finding in planktonic copepods. II. the pheromone cloud of Pseudocalanus elongatus. Mar. Ecol. Prog. Ser., 300 (2005), 117–128. [CrossRef] [Google Scholar]
  24. C. J. Krebs. Ecology. Sixth edition. Pearson, San Francisco, 2009. [Google Scholar]
  25. W. Lampert. Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs. BMC Biol., 3 (2005), 10. [CrossRef] [PubMed] [Google Scholar]
  26. W. M. Lewis. Evolutionary interpretations of allelochemical interactions in phytoplankton algae. Am. Nat., 127 (1986), 184–194. [CrossRef] [Google Scholar]
  27. N. D. Lewis, M. N. Breckels, S. D. Archer, A. Morozov, J. W. Pitchford, M. Steinke, E. A. Codling. Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model. Biogeochemistry, 110 (2012), 303–313. [CrossRef] [Google Scholar]
  28. N. D. Lewis, M. N. Breckels, M. Steinke, E. A. Codling. Role of infochemical mediated zooplankton grazing in a phytoplankton competition model. Ecol. Complex., (2012), [Google Scholar]
  29. MATLAB. The Language of Technical Computing, version 7.8. Mathworks, Natick, MA. [Google Scholar]
  30. D. J. S. Montagnes, J. A. Berges, P. J. Harrison, F. J. R. Taylor. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr., 39 (1994), 1044–1060. [CrossRef] [Google Scholar]
  31. A. Morozov, E. Arashkevich, Towards a correct description of zooplankton feeding in models: Taking into account food-mediated unsynchronized vertical migration. J. Theor. Biol., 262 (2010), 346–360. [CrossRef] [PubMed] [Google Scholar]
  32. A. Morozov, E. Arashkevich, A. Nikishina, K. Solovyev. Nutrient-rich plankton community stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity. Math. Med. Biol., 28 (2011), 185–215. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  33. J. C. Nejstgaard, U. Båmstedt, E. Bagøien, P. T. Solberg. Algal constraints on copepod grazing. Growth state, toxicity, cell size, and season as regulating factors. ICES J. Mar. Sci., 52 (1995), 347–357. [CrossRef] [Google Scholar]
  34. J. C. Nejstgaard, I. Gismervik, P. T. Solberg. Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Mar. Ecol. Prog. Ser., 147 (1997), 197–217. [CrossRef] [Google Scholar]
  35. G. A. Nevitt, R. R. Veit, P. Kareiva. Dimethyl sulphide as a foraging cue for Antarctic Procellariiform seabirds. Nature, 376 (1995), 680–682. [CrossRef] [Google Scholar]
  36. G. Pohnert, O. Lumineau, A. Cueff, S. Adolph, C. Cordevant, M. Lange, S. Poulet. Are volatile unsaturated aldehydes from diatoms the main line of chemical defence against copepods?. Mar. Ecol. Prog. Ser., 245 (2002), 33–35. [CrossRef] [Google Scholar]
  37. G. Pohnert, M. Steinke, R. Tollrian. Chemical cues, defense metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol., 22 (2007), 198–204. [Google Scholar]
  38. S. A. Poulet, G. Ouellet. The role of amino acids in the chemosensory swarming and feeding of marine copepods. J. Plankton Res., 4 (1982), 341–361. [CrossRef] [Google Scholar]
  39. M. L. Rosenzweig. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171 (1971), 385–387. [CrossRef] [PubMed] [Google Scholar]
  40. M. L. Rosenzweig, R. H. MacArthur. Graphical representation and stability conditions of predator-prey interactions. Am. Nat., 97 (1963), 209–223. [CrossRef] [Google Scholar]
  41. A. B. Ryabov, B. Blasius. A graphical theory of competition on spatial resource gradients. Ecol. Lett 14 (2011), 220–228. [CrossRef] [PubMed] [Google Scholar]
  42. A. B. Ryabov. Phytoplankton competition in deep biomass maximum. Theor. Ecol., 5 (2012), 373–385. [CrossRef] [Google Scholar]
  43. E. S. Saltzman, D. B. King, K. Holmen, C. Leck. Experimental determination of the diffusion coefficient of dimethylsulfide in water. J. Goephys. Res., 98 (1993), 16481–16486. [CrossRef] [Google Scholar]
  44. B. A. Shaw, R. J. Andersen, P.J. Harrisen. Feeding deterrence properties of apo-fucoxanthinoids from marine diatoms. I. Chemical structures of apo-fucoxanthinoids produced by Phaeodactylum tricornutum. Mar. Biol., 124 (1995), 467–472. [CrossRef] [Google Scholar]
  45. B. A. Shaw, P. J. Harrison, R. J. Andersen. Feeding deterrence properties of apo-fucoxanthinoids from marine diatoms. II. Physiology of production of apo-fucoxanthinoids by the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, and their feeding deterrence effects on the copepod Tigriopus californicus. Mar. Biol., 124 (1995), 473–481. [CrossRef] [Google Scholar]
  46. J. Stefels, M. Steinke, S. Turner, G. Malin, S. Belviso. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry, 83 (2007), 245–275. [CrossRef] [Google Scholar]
  47. M. Steinke, G. Malin, S. D. Archer, P. H. Burkill, P. S. Liss. DMS production in a coccolithophorid bloom: evidence for the importance of dinoflagellate DMSP lyases. Aquat. Microb. Ecol., 26 (2002), 259–270. [CrossRef] [Google Scholar]
  48. M. Steinke, G. Malin, P.S. Liss. Trophic interactions in the sea: an ecological role for climate relevant volatiles? J. Phycol., 38 (2002), 630–638. [CrossRef] [Google Scholar]
  49. M. Steinke, J. Stefels, E. Stamhuis. Dimethyl sulfide triggers search behaviour in copepods. Limnol. Oceanogr., 51 (2006), 1925–1930. [CrossRef] [Google Scholar]
  50. W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman. An antioxidant function for DMS and DMSP in marine algae. Nature, 418 (2002), 317–320. [CrossRef] [PubMed] [Google Scholar]
  51. D. Tilman. Resource Competition and Community Structure. Princeton University Press, Princeton, NJ. [Google Scholar]
  52. P. Tiselius. Behaviour of Acartia tonsa in patchy food environments. Limnol. Oceanogr., 37 (1992), 1640–1651. [CrossRef] [Google Scholar]
  53. J. T. Turner, P. A. Tester. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol. Oceanogr., 42 (1997), 1203–1214. [CrossRef] [Google Scholar]
  54. A. W. Visser, T. Kiørboe. Plankton motility patterns and encounter rates. Oecologia, 148 (2006), 538–546. [CrossRef] [PubMed] [Google Scholar]
  55. G. V. Wolfe, M. Steinke. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr., 41 (1996), 1151–1160. [CrossRef] [Google Scholar]
  56. C. B. Woodson, D. R. Webster, M. J. Weissburg, J. Yen. Cue hierarchy and foraging in calanoid copepods: ecological implications of oceanographic structure. Mar. Ecol. Prog. Ser., 330 (2007), 163–177. [CrossRef] [Google Scholar]
  57. H. Yamazaki, K. D. Squires. Comparison of oceanic turbulence and copepod swimming. Mar. Ecol. Prog. Ser., 144 (1996), 299–301. [CrossRef] [Google Scholar]
  58. J. Yen, K. D. Rasberry, D. R. Webster. Quantifying copepod kinematics in a laboratory apparatus. J. Mar. Syst., 69 (2008), 283–294. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.