Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 6, 2013
Ecology
Page(s) 5 - 24
DOI https://doi.org/10.1051/mmnp/20138602
Published online 28 November 2013
  1. M. Aldana, C. Huepe, Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach, J. Stat. Phys., 112 (2003), No. 1-2, 135–153. [CrossRef] [Google Scholar]
  2. I. Aoki, A simulation study on the schooling mechanism in fish, Bull. Japan Soc. Sci. Fish, 48 (1982), 1081–1088. [Google Scholar]
  3. S. Bazazi, F. Bartumeus, J.J. Hale, I.D. Couzin, Intermittent motion in desert locusts: behavioural complexity in simple environments, PLOS Comput. Biol., 8 (2012), No. 5, e1002498. [CrossRef] [PubMed] [Google Scholar]
  4. N.W.F. Bode, D.W. Franks, A.J. Wood, Making noise: emergent stochasticity in collective motion, J. Theor. Biol., 267 (2010), No. 3, 292–299. [CrossRef] [PubMed] [Google Scholar]
  5. N.W.F. Bode, A.J. Wood, D.W. Franks, The impact of social networks on animal collective motion, Anim. Behav., 82 (2011), 29-38. [CrossRef] [Google Scholar]
  6. C.A.H. Bousquet, D.J.T. Sumpter, M.B. Manser, Moving calls: a vocal mechanism underlying quorum decisions in cohesive groups, Proc. R. Soc. B, 278 (2011), No. 1711, 1482–1488. [CrossRef] [Google Scholar]
  7. C. Brown, K.N. Laland, Social learning in fishes: a review, Fish and fisheries, 4 (2003), 280-288. [Google Scholar]
  8. J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, S. J. Simpson, From disorder to order in marching locusts, Science, 312 (2006), 1402-1406. [CrossRef] [PubMed] [Google Scholar]
  9. J. Buhl, G.A. Sword, S. J. Simpson, Using field data to test locust migratory band collective movement models, Interface Focus, 2 (2012), No. 6, 757–763. [CrossRef] [PubMed] [Google Scholar]
  10. P.-L. Buono, R. Eftimie, Analysis of Hopf-Hopf bifurcations in nonlocal hyperbolic models for self-organised aggregations, Math. Models Methods Appl. Sci. (2013), To Appear. [Google Scholar]
  11. G. Chaverri, E.H. Gillam, T.H. Kunz, A call-and-response system facilitates group cohesion among disc-winged bats, Behav. Ecol., 24 (2013), No. 2, 481–487. [CrossRef] [Google Scholar]
  12. I. D. Couzin, J. Krause, R. James, G.D. Ruxton, N. R. Franks, Collective memory and spatial sorting in animal groups, J. Theor. Biol., 218 (2002), 1-11. [Google Scholar]
  13. A. Czirók, A.-L. Barabási, T. Vicsek, Collective motion of self-propelled particles: kinetic phase transition in one dimension, Physical Review Letters, 82 (1999), No. 1, 209–212. [Google Scholar]
  14. M.R. D’Orsogna, Y.L. Chuang, A.L. Bertozzi, L.S. Chayes, Self-propelled particles with soft-core interactions: patterns, stability and collapse, Phys. Rev. Lett., 96 (2006), No. 10, 104302. [Google Scholar]
  15. V. Dossetti, Cohesive motion in one-dimensional flocking, J. Phys. A: Math. Theor., 45 (2012), 035003. [CrossRef] [Google Scholar]
  16. R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review, J. Math. Biol., 65 (2012), No. 1, 35–75. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. R. Eftimie, G. de Vries, M. A. Lewis, Complex spatial group patterns result from different animal communication mechanisms, Proc. Natl. Acad. Sci., 104 (2007), No. 17, 6974–6979. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Eftimie, G. de Vries, M. A. Lewis, F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), No. 5, 1537–1566. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. R. Eftimie, G. de Vries, M.A. Lewis, Weakly nonlinear analysis of a hyperbolic model for animal group formation, J. Math. Biol., 59 (2009), 37–74. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. R. Erban, H. G. Othmer, From individual to collective behavior in bacterial chemotaxis, SIAM J. Appl. Math., 65 (2004), No. 2, 361–391. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Fetecau, R. Eftimie, An investigation of a nonlocal hyperbolic model for self-organization of biological groups, J. Math. Biol., 61 (2009), No. 4, 545–579. [CrossRef] [PubMed] [Google Scholar]
  22. R.C. Fetecau, Collective behavior of biological aggregations in two dimensions: a nonlocal kinetic model, Math. Model. Method. Appl. Sci., 21 (2011), No. 07, 1539. [Google Scholar]
  23. V. Gazi, K.M. Passino, A class of attraction/repulsion functions for stable swarm aggregations, Int. J. Control, 77 (2004), No. 18, 1567–1579. [CrossRef] [Google Scholar]
  24. S. Gueron, S. A. Levin, D. I. Rubenstein, The dynamics of herds: from individuals to aggregations, J. Theor. Biol., 182 (1996), 85-98. [CrossRef] [Google Scholar]
  25. C. K. Hemelrijk, H. Kunz, Density distribution and size sorting in fish schools: an individual-based model, Behay. Ecol., 16 (2005), No. 1, 178–187. [Google Scholar]
  26. T. Hillen, Invariance principles for hyperbolic random walk systems, J. Math. Ana. Appl., 210 (1997), 360-374. [CrossRef] [Google Scholar]
  27. D.J. Hoare, I.D. Couzin, J.G. Godin, J. Krause, Context-dependent group size choice in fish, Anim. Behav., 67 (2004), 155–164. [Google Scholar]
  28. D. Horstmann, A. Stevens, A constructive approach to traveling waves in chemotaxis, J. Nonlinear. Sci., 14 (2004), No. 1, 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Huth, C. Wissel, The simulation of the movement of fish schools, J. Theor. Biol., 156 (1992), 365-385. [Google Scholar]
  30. _, The simulation of fish schools in comparison with experimental data, Ecol. Model., 75/76 (1994), 135–145. [CrossRef] [Google Scholar]
  31. Y. Inada, Steering mechanisms of fish schools, Complexity International, 8 (2001), 1–9. [Google Scholar]
  32. M. Iwasa, K. Iida, D. Tanaka, Hierarchical cluster structures in a one-dimensional swarm oscillator model, Phys. Rev. E, 81 (2010), No. 4, 046220. [CrossRef] [Google Scholar]
  33. E.F. Keller, L.A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248. [CrossRef] [PubMed] [Google Scholar]
  34. G. Kerth, C. Ebert, C. Schmidtke, Group decision making in fission-fusion societies: evidence from two-field experiments in Bechstein’s bats, Proc. R. Soc. B, 273 (2006), 2785-2790. [CrossRef] [Google Scholar]
  35. H. Levine, W.-J. Rappel, I. Cohen, Self-organization in systems of self-propelled particles, Phys. Rev. E, 63 (2000), No. 1, 01701. [Google Scholar]
  36. R. Lui, Z.A. Wang, Travelling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), No. 5, 739–761. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  37. R. Lukeman, Y.-X. Li, L. Edelstein-Keshet, Inferring individual rules from collective behaviour, Proc. Natl. Acad. Sci., 107 (2010), No. 28, 12576–12580. [Google Scholar]
  38. T. Nagai, T. Ikeda, Travelling waves in a chemotactic model, J. Math. Biol., 30 (1991), No. 2, 169–184. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  39. S.T.D. New, R.A. Peters, A framework for quantifying properties of 3-dimensional movement-based signals, Current Zoology, 56 (2010), No. 3, 327–336. [Google Scholar]
  40. O.J. O’Loan, M.R. Evans, Alternating steady state in one-dimensional flocking, J. Phys A: Math. Gen., 32 (1999), No. 8, L99. [CrossRef] [Google Scholar]
  41. J. K. Parrish, S. V. Viscido, D. Grunbaum, Self-organized fish schools: An examination of emergent properties, Bioll. Bull., 202 (2002), 296-305. [Google Scholar]
  42. B. Pfistner, A one dimensional model for the swarming behaviour of Myxobacteria, Biological Motion, Lecture Notes on Biomathematics, 89 (W. Alt, G. Hoffmann, eds.), Springer, 1990, pp. 556-563. [Google Scholar]
  43. H. Pomeroy, F. Heppner, Structure of turning in airborne rock dove (Columba Livia) flocks, The Auk, 109 (1992), 256-267. [CrossRef] [Google Scholar]
  44. J.R. Raymond, M.R. Evans, Flocking regimes in a simple lattice model, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 73 (2006), No. 3/2, 036112. [CrossRef] [PubMed] [Google Scholar]
  45. H. Reuter, B. Breckling, Self organization of fish schools: an object-oriented model, Ecol. Model., 75/76 (1994), 147159. [CrossRef] [Google Scholar]
  46. C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, Computer Graphics, 21 (1987), 25-34. [Google Scholar]
  47. J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzanand, B. Perthame, Mathematical description of bacterial traveling pulses, PLOS Computational Biology, 6 (2010), No. 8, e1000890. [Google Scholar]
  48. H.R. Schwetlick, Travelling waves for chemotaxis-systems, Proc. Appl. Math. Mech, 3 (2003), 476-478. [CrossRef] [Google Scholar]
  49. S. Stocker, Models for tuna school formation, Math. Biosci, 156 (1999), 167-190. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  50. C. M. Topaz, A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2006), No. 1, 152–174. [CrossRef] [Google Scholar]
  51. C. M. Topaz, A. L. Bertozzi, M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Bio., 68 (2006), 1601-1623. [Google Scholar]
  52. C. Torney, Z. Neufeld, I. D. Couzin, Context-dependent interaction leads to emergent search behaviour in social aggregates, Proc. Natl. Acad. Sci., 106 (2009), No. 52, 22055–22060. [CrossRef] [Google Scholar]
  53. S. V. Viscido, J. K. Parish, D. Grunbaum, Individual behavior and emergent properties of fish schools: a comparison of observation and theory, Mar. Ecol. Prog. Ser., 273 (2004), 239-249. [Google Scholar]
  54. C. Xue, H.J. Hwang, K.J. Painter, R. Erban, Travelling waves in hyperbolic chemotactic equations, Bull. Math. Biol., 73 (2011), No. 8, 1695–1733. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.