Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 1, 2014
Issue dedicated to Michael Mackey
Page(s) 27 - 38
DOI https://doi.org/10.1051/mmnp/20149103
Published online 07 February 2014
  1. B. Alberts, A. Johnson, J. Lewis J. Molecular Biology of the Cell (4th ed.). Garland Science. New York, 2002. [Google Scholar]
  2. F. Xue, D. M. Janzen, D. A. Knecht. Contribution of Filopodia to Cell Migration: A Mechanical Link between Protrusion and Contraction. International Journal of Cell Biology, vol. 2010, Article ID 507821, 13 pages, 2010. [Google Scholar]
  3. I. Budin, N.K. Devaraj. Membrane Assembly Driven by a Biomimetic Coupling Reaction. Journal of the American Chemical Society 134 (2), (2011), 751-753. [CrossRef] [PubMed] [Google Scholar]
  4. Alberts JB, Odell GM In Silico Reconstitution of Listeria Propulsion Exhibits Nano-Saltation. PLoS Biol 2(12): e412 (2004), 2054-2066. [CrossRef] [Google Scholar]
  5. D. Boal. Mechanics of the cell. Cambridge University Press, 2002. [Google Scholar]
  6. Nicolas Huc. Modèle pour l’étude du rôle de la membrane dans la df´ormation cellulaire : application à la spinogénèse. Université de Grenoble, 2004. [Google Scholar]
  7. N. El-Khatib, N. Huc, Y. Goldberg, J-L Martiel. Analysis of Cell deformation with FEMLAB. Proceedings of the COMSOL Multiphysics User’s Conference, Paris 2005. [Google Scholar]
  8. E. Evans, R. Skalak. Mechanics and thermodynamics of biomembranes. CRC Press (1980). [Google Scholar]
  9. F. Gerbal, P. Chatin, Y. Rabin, J. Prost. An elastic analysis of Listeria monocytogenes propulsion. Biophysical J., 79, (2000), 2259-2275. [Google Scholar]
  10. S. Hénon, G. Lenormand, A. Richert, F. Gallet A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophysical J., 76, (1999), 1145-1151. [CrossRef] [PubMed] [Google Scholar]
  11. W.C. Hwang, R.E. Waugh. Energy of dissociation of lipid from the membrane skeleton of red blood cells. Biophysical J., 72, (1997), 2669-2678. [CrossRef] [Google Scholar]
  12. G. Lenormand, S. Hénon, A. Richert, J. Siméon, F. Gallet Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. Biophysical J. 81, (2001), 43-56. [CrossRef] [PubMed] [Google Scholar]
  13. A. Mogilner, G. Oster Cell motility driven by actin polymerization. Biophysical J., 71, (1996), 3030-3045. [Google Scholar]
  14. A. Mogilner, L. Edelstein-Keshet Regulation of actin dynamics in rapidly moving cells: A quantitative analysis. Biophysical J., 83, (2002), 1237-1258. [Google Scholar]
  15. D. Needham, R.M. Hochmuth. A sensitive measure of surface stress in the resting neutrophil. Biophysical J., 61, (1992), 1664-1670. [CrossRef] [Google Scholar]
  16. T. Pollard, G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112, (2003), 453-465. [CrossRef] [PubMed] [Google Scholar]
  17. T.M. Svitkina, E.A. Bulanova, O.Y. Chaga, D.M. Vignjevic, S. Kojima, J.M. Vasiliev, G. Borisy. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell. Biol., 160, (2003), 409-421. [CrossRef] [PubMed] [Google Scholar]
  18. R. E. Waugh, R. G. Bauserman. Physical measurements of bilayer-skeletal separation forces. Ann. Biomed. Eng. 23, 1995, 308-321 [CrossRef] [PubMed] [Google Scholar]
  19. F. Nobile. Numerical Approximation of Fluid- Structure Interaction Problems with Aplication to Haemodynamics. PhD thesis, 2001. [Google Scholar]
  20. J. Janela, A. Moura, A. Sequeira. A 3D non- Newtonian fluid-structure interaction model for blood flow in arteries. Journal of Computational and Applied Mathematics, 234, 2010, 2783-2791. [CrossRef] [Google Scholar]
  21. L. Formaggia, A. Moura, F. Nobile. On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. ESAIM: Mathematical Modelling and Numerical Analysis, 41, 2007, 743-769. [Google Scholar]
  22. A. Chambolle, B. Desjardins, M. Esteban, C. Grandmont. Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech., 7, 2005, 368-404. [CrossRef] [MathSciNet] [Google Scholar]
  23. H. Beirão da Veiga. On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech., 6, 2004, 21-52. [CrossRef] [MathSciNet] [Google Scholar]
  24. D. Coutand, S. Shkoller. The interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Ration. Mech. Anal. 179, 2006, 303-352. [CrossRef] [Google Scholar]
  25. T.J.R. Hughes, W.K. Liu, T.K. Zimmermann. Arbitrary lagrangian-eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 29, 1981, 329-349. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. À. Fernández, M. Moubachir A Newton method using exact jacobians for solving fluid-structure coupling. Computers and Structures, v.83, 2005, 127-142. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.