Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 1, 2014
Issue dedicated to Michael Mackey
Page(s) 4 - 26
DOI https://doi.org/10.1051/mmnp/20149102
Published online 07 February 2014
  1. M. Adimy, F. Crauste. Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulations. Math. Comput. Modelling, 49 (11-12) 2009, 2128–2137. [Google Scholar]
  2. M. Adimy, F. Crauste, A. El Abdllaoui. Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. J. Biol. Systems, 16(3) 2008, 395–424. [Google Scholar]
  3. J. L. Avila, C. Bonnet, J. Clairambault, H. Ozbay, S.-I. Niculescu, F. Merhi, R. Tang, J.-P. Marie. A new model of cell dynamics in Acute Myeloid Leukemia involving distributed delays. In 10th IFAC Workshop on Time Delay Systems, Boston, USA, 2012, 55–60. [Google Scholar]
  4. A. Ballesta, F. Mehri, X. Dupuis, C. Bonnet, J.F. Bonnans, R. Tang, F. Fava, P. Hirsch, J.-P. Marie, J. Clairambault. In vitro dynamics of LAM patient blood sample cells and their therapeutic control by aracytine and an Flt3 inhibitor. In preparation. [Google Scholar]
  5. C. Basdevant, J. Clairambault, F. Lévi. Optimisation of time-scheduled regimen for anti-cancer drug infusion. M2AN Math. Model. Numer. Anal., 39(6) 2005, 1069–1086. [Google Scholar]
  6. F. Billy, J. Clairambault. Designing proliferating cell population models with functional targets for control by anti-cancer drugs. Discrete Contin. Dyn. Syst. Ser. B, 18(4) 2013, 865–889. [Google Scholar]
  7. F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre, T. Ouillon, S. Saito. Synchronisation and control of proliferation in cycling cell population models with age structure. Mathematics and Computers in Simulation, 2012. [Google Scholar]
  8. J.F. Bonnans, X. Dupuis, L. Pfeiffer. Second-order necessary conditions in Pontryagin form for optimal control problems. Rapport de recherche RR-8306, INRIA, May 2013. [Google Scholar]
  9. J.F. Bonnans, P. Martinon, V. Grélard. Bocop v1.0.3: A collection of examples. Url: www.bocop.org, June 2012. [Google Scholar]
  10. G. Feichtinger, G. Tragler, V.M. Veliov. Optimality conditions for age-structured control systems. J. Math. Anal. Appl., 288(1) 2003, 47–68. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Gabriel, S.P. Garbett, V. Quaranta, D.R. Tyson, G.F. Webb. The contribution of age structure to cell population responses to targeted therapeutics. J. Theoret. Biol., 311 2012, 19–27. [Google Scholar]
  12. L. Göllmann, D. Kern, H. Maurer. Optimal control problems with delays in state and control variables subject to mixed control-state constraints. Optimal Control Appl. Methods, 30(4) 2009, 341–365. [Google Scholar]
  13. T. Guinn. Reduction of delayed optimal control problems to nondelayed problems. J. Optimization Theory Appl., 18(3) 1976, 371–377. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Halanay. Optimal controls for systems with time lag. SIAM Journal on Control, 6(2) 1968, 215–234. [CrossRef] [Google Scholar]
  15. P. Hinow, S. Wang, C. Arteaga, G. Webb. A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a her2 tyrosine kinase inhibitor. Theoretical Biology and Medical Modelling, 4(1) 2007, 14. [CrossRef] [MathSciNet] [Google Scholar]
  16. U. Ledzewicz, H. Maurer, H. Schättler. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Math. Biosci. Eng., 8(2) 2011, 307–323. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. U. Ledzewicz, H. Schättler. Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy. Math. Biosci., 206(2) 2007, 320–342. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. M.C. Mackey. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood, 51(5) 1978, 941–956. [PubMed] [Google Scholar]
  19. C. Marquet, M. Adimy. On the stability of hematopoietic model with feedback control. C. R. Math. Acad. Sci. Paris, 350(3-4) 2012, 173–176. [Google Scholar]
  20. P. Michel, S. Mischler, B. Perthame. General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. (9), 84(9) 2005, 1235–1260. [CrossRef] [MathSciNet] [Google Scholar]
  21. H. Özbay, C. Bonnet, H. Benjelloun, J. Clairambault. Stability analysis of cell dynamics in leukemia. Math. Model. Nat. Phenom., 7(1) 2012, 203–234. [Google Scholar]
  22. D. Peixoto, D. Dingli, J.M. Pacheco. Modelling hematopoiesis in health and disease. Mathematical and Computer Modelling, 53(7,8) 2011, 1546–1557. [CrossRef] [Google Scholar]
  23. B. Perthame. Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007. [Google Scholar]
  24. J.M. Rowe. Why is clinical progress in acute myelogenous leukemia so slow? Best Practice & Research Clinical Haematology, 21(1): 2008, 1–3. [CrossRef] [Google Scholar]
  25. T. Stiehl, A. Marciniak-Czochra. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math. Model. Nat. Phenom., 7(1) 2012, 166–202. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.