Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 1, 2014
Issue dedicated to Michael Mackey
Page(s) 58 - 78
DOI https://doi.org/10.1051/mmnp/20149105
Published online 07 February 2014
  1. M. Adimy. Integrated semigroups and delay differential equations. J. of Math. Anal. and Appl., 177 (1993), no. 1, 125–134. [CrossRef] [Google Scholar]
  2. M. Adimy, F. Crauste, S. Ruan. Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Analysis: Real World Applications, 6 (2005), no. 4, 651–670. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM Journal on Applied Mathematics, 65 (2005), no. 4, 1328–1352. [Google Scholar]
  4. M. Adimy, F. Crauste, S. Ruan. Periodic oscillations in leukopoiesis models with two delays. J. Theor. Biol., 242 (2006), 288-299. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. M. Adimy, F. Crauste, A. Halanay, M. Neamtu, D. Opris. Stability of limit cycles in a pluripotent stem cell dynamics model. Chaos, Solitons and Fractals, 27 (2006), 4, 1091-1107. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Adimy, F. Crauste. Delay Differential Equations and Autonomous Oscillations in Hematopoietic Stem Cell Dynamics Modeling. Math. Model. Nat. Phenom., Vol. 7 (2012), No. 6, 1-22. [Google Scholar]
  7. J. Belair, M.C. Mackey. A model for the regulation of mammalian platelet production. Annals of the New York Academy of Sciences, 504 (1987), no. 1, 280–282. [Google Scholar]
  8. E. Beretta, Y. Kuang. Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal., 33 (2002), no. 5, 1144-1165. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Bernard, J. Belair, M.C. Mackey. Oscillations in cyclical neutropenia: new evidence based on mathematical modelling. J. Theor. Biology, 223 (2003), 283-298. [Google Scholar]
  10. N. Chafee. A bifurcation problem for a functional differential equation of finitely retarded type. J. Math. Anal. and Appl., 35 (1991), 312-348. [CrossRef] [Google Scholar]
  11. C. Colijn, A.C. Fowler, M.C. Mackey. High frequency spikes in long period blood cell oscillations. Journal of mathematical biology, 53 (2006), no. 4, 499-519. [Google Scholar]
  12. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis I-Periodic chronic myelogenous leukemia. J. Theor. Biology, 237 (2005), 117-132. [Google Scholar]
  13. K. Cooke, Z. Grossman. Discrete Delay, Distributed Delay and Stability Switches. J. Math. Anal. Appl., 86 (1982), 592-627. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. Cooke, P. van den Driessche. On zeros of some transcendental equations. Funkcialaj Ekvacioj, 29 (1986), 77-90. [MathSciNet] [Google Scholar]
  15. M.W.N. Deininger, J.M. Goldman, J.V. Melo. The molecular biology of chronic myeloid leukemia. Blood, 96 (2000), no. 10, 3343–3356. [PubMed] [Google Scholar]
  16. I. Drobnjak, A.C. Fowler. A Model of Oscillatory Blood Cell Counts in Chronic Myelogenous Leukaemia. Bulletin of mathematical biology, 73 (2011), no. 12, 2983–3007. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. L.E. El’sgol’ts, S.B. Norkin. Introduction to the theory of differential equations with deviating arguments. (in Russian). Nauka, Moscow, 1971. [Google Scholar]
  18. K. Engelborghs, T. Luzyanina, D. Roose. Numerical bifurcation analysis of delay differential equations using dde-biftool. ACM Transactions on Mathematical Software (TOMS), 28 (2002), no. 1, 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Friedman. Cancer as Multifaceted Disease. Math. Model. Nat. Phenom., Vol. 7 (2012), no. 1, 3–28. [CrossRef] [EDP Sciences] [Google Scholar]
  20. J.M. Goldman, J.V. Melo. Chronic myeloid leukemia—advances in biology and new approaches to treatment. New England Journal of Medicine, 349 (2003), no. 15, 1451–1464. [CrossRef] [Google Scholar]
  21. J. Hale. Introduction to Functional Differential Equations. Springer, New York, 1977. [Google Scholar]
  22. J. Hale, S.M. Verduyn Lunel. Theory of Functional Differential Equations, Springer, New York, 1993. [Google Scholar]
  23. B.D. Hassard, N.D. Kazarinoff, Y.H. Wan. Theory and Applications of Hopf Bifurcation. London Mathem. Soc. Lecture Note Series 41, Cambridge University Press, 1981. [Google Scholar]
  24. C. Haurie, D.C. Dale, R. Rudnicki, M.C. Mackey. Modeling complex neutrophil dynamics in the grey collie. Journal of theoretical biology, 204 (2000), no. 4, 505–519. [Google Scholar]
  25. N.L. Komarova, D. Wodarz. Drug resistance in cancer: principles of emergence and prevention. Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), no. 27, 9714–9719. [Google Scholar]
  26. M.C. Mackey. Mathematical models of hematopoietic cell replication and control. Case Studies in Mathematical Modeling–Ecology, Physiology and Cell Biology. New Jersey, Prentice-Hall, 151-182, 1997. [Google Scholar]
  27. J.M. Mahaffy, J. Belair, M.C. Mackey. Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis. Journal of theoretical biology, 190 (1998), no. 2, 135–146. [Google Scholar]
  28. A. Marciniak-Czochra, T. Stiehl, W. Wagner. Modeling of replicative senescence in hematopoietic development. Aging, 1 (2009), no. 8, 723–732. [Google Scholar]
  29. F. Michor, T.P. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C.L. Sawyers, M.A. Nowak. Dynamics of chronic myeloid leukaemia. Nature, 435 (2005), 7046, 1267-1270. [CrossRef] [PubMed] [Google Scholar]
  30. F. Michor, Y. Iwasa, M.A. Nowak. Dynamics of cancer progression. Nature Reviews Cancer 4 (2004), no. 3, 197–205. [CrossRef] [PubMed] [Google Scholar]
  31. H. Ozbay, C. Bonnet, H. Benjelloun and J. Clairambault. Stability Analysis of Cell Dynamics in Leukemia. Math. Model. Nat. Phenom., Vol. 7 (2012), no. 1, 203–234. [Google Scholar]
  32. L. Pujo-Menjouet, S. Bernard, M. C. Mackey. Long period oscillations in a G0 model of hematopoietic stem cells. SIAM J. Appl. Dynam. Sys., 4 (2005), no. 2, 312–332. [Google Scholar]
  33. L. Pujo-Menjouet, M.C. Mackey. Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biologies, 327 (2004), 235-244. [Google Scholar]
  34. I. Roeder, M. Horn, I. Glauche, A. Hochhaus, M.C. Mueller, M. Loeffler. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nature medicine, 12 (2006), no. 10, 1181–1184. [Google Scholar]
  35. C.L. Sawyers. Chronic myeloid leukemia. New England Journal of Medicine, 340 (1999), no. 17, 1330–1340. [CrossRef] [Google Scholar]
  36. L. Shampine, S. Thompson. Solving ddes in matlab. Applied Numerical Mathematics, 37 (2001), no. 4, 441–458. [CrossRef] [MathSciNet] [Google Scholar]
  37. T. Stiehl, A. Marciniak-Czochra. Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics. Math. Model. Nat. Phenom., Vol. 7 (2012), no. 1, 166–202. [Google Scholar]
  38. C. Tomasetti, D. Levy. Role of symmetric and asymmetric division of stem cells in developing drug resistance. PNAS, 107 (2010), 39, 16766-16771. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.