Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 1, 2014
Issue dedicated to Michael Mackey
Page(s) 79 - 91
DOI https://doi.org/10.1051/mmnp/20149106
Published online 07 February 2014
  1. D.F. Anderson. Incorporating postleap checks in tau-leaping. J. Chem. Phys., 128 (2008), 054103. [CrossRef] [PubMed] [Google Scholar]
  2. Y. Cao, D.T. Gillespie, L.R. Petzold. Avoiding negative populations in explicit poisson tau-leaping. J. Chem. Phys., 123 (2005), 054104. [CrossRef] [PubMed] [Google Scholar]
  3. Y. Cao, D.T. Gillespie, L.R. Petzold. Efficient stepsize selection for the tau-leaping simulation method. J. Chem. Phys., 124 (2006), 044109. [CrossRef] [PubMed] [Google Scholar]
  4. A. Chatterjee, D. Vlachos, M. Katsoulakis. Binomial distribution based τ-leap accelerated stochastic simulation. J. Chem. Phys., 122 (2005), 024112. [CrossRef] [PubMed] [Google Scholar]
  5. L.Y. Chew, C. Ting. Microscopic chaos and gaussian diffusion processes. Physica A., 307 (2002), 275–296. [CrossRef] [Google Scholar]
  6. S.L. Cotter, K.C. Zygalakis, I.G. Kevrekidis, R. Erban. A constrained approach to multi scale stochastic simulation of chemically reacting systems. J. Chem. Phys., 135 (2011), 094102. [CrossRef] [PubMed] [Google Scholar]
  7. M.B. Elowitz, A.J. Levine, E.D. Siggia, and P.S. Swain, Stochastic gene expression in a single cell. Science, 297 (2002), 1183–1186. [CrossRef] [PubMed] [Google Scholar]
  8. P. Gaspard, M.E. Briggs, M.K. Francis, J.V. Sengers, R.W. Gammon, J.R. Dorfman, R.V. Calabrese. Experimental evidence for microscopic chaos. Nature, 394 (1998), 865–868. [CrossRef] [Google Scholar]
  9. D.T. Gillespie. The chemical langevin equation. J. Chem. Phys., 113 (2000), 297–306. [NASA ADS] [CrossRef] [Google Scholar]
  10. D.T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys., 115 (2001), 1716–1733. [CrossRef] [Google Scholar]
  11. D.T. Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem., 58 (2007), 35–55. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  12. I. Golding, J. Paulsson, S.M. Zawilski, E.C. Cox, Real-time kinetics of gene activity in individual bacteria. Cell, 123 (2005), 1025–1036. [CrossRef] [PubMed] [Google Scholar]
  13. M. Kærn, T.C. Elston, W.J. Blake, J.J. Collins, Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6 (2005), 451–464. [CrossRef] [PubMed] [Google Scholar]
  14. N.G. Van Kampen. Stochastic processes in physics and chemistry. 3rd ed., Elsevier, 2007. [Google Scholar]
  15. P.E. Kloeden, E. Platen. Numerical solution of stochastic differential equations. Springer, New York, 1992. [Google Scholar]
  16. A. Lasota, M.C. Mackey. Probabilistic properties of deterministic systems. Cambridge University Press, Cambridge, 2008. [Google Scholar]
  17. J. Lei. Stochasticity in gene expression with both intrinsic noise and fluctuation in kinetic parameters. J. Theor. Biol., 256 (2009), 485–492. [CrossRef] [PubMed] [Google Scholar]
  18. J. Lei, M.C. Mackey. Deterministic brownian motion generated from differential delay equation. Phy. Rev. E. 84 (2011), 041105. [CrossRef] [Google Scholar]
  19. M.C. Mackey, M. Tyran-Kamińska. Deterministic brownian motion: The effects of perturbing a dynamical system by a chaotic semi-dynamical system. Physics Reports, 422 (2006), 167–222. [CrossRef] [MathSciNet] [Google Scholar]
  20. G.N. Milstein. Numerical integration of stochastic differential equations. Kluwer, Dordrecht, 1995. [Google Scholar]
  21. B. Munsky, G. Neuert, A. van Oudenaarden. Using gene expression noise to undertand gene regulation. Science, 336 (2012), 183–187. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. J. Paulsson. Summing up the noise in gene networks. Nature, 427 (2004), 415–418. [CrossRef] [PubMed] [Google Scholar]
  23. T. Tian, K. Burrage. Binomial leap methods for simulating stochastic chemical kinetics. J. Chem. Phys., 121 (2004), 10356–10364. [CrossRef] [PubMed] [Google Scholar]
  24. T-L.To, N. Maheshri. Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science, 327 (2010), 1142–1145. [CrossRef] [PubMed] [Google Scholar]
  25. G. Trefán, P. Grigolini, B.J. West. Deterministic brownian motion. Phys. Rev. A., 45 (1992), no. 2, 1249–1252. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.