Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 9, Number 1, 2014
Issue dedicated to Michael Mackey
|
|
---|---|---|
Page(s) | 92 - 107 | |
DOI | https://doi.org/10.1051/mmnp/20149107 | |
Published online | 07 February 2014 |
- P. A. Abrams, L. R. Ginzburg. The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol., 15(8) (2000), 337–341. [CrossRef] [PubMed] [Google Scholar]
- M. S. Bartlett. On theoretical models for competitive and predatory biological systems. Biometrika, 44(1-2) (1957), 27–42. [MathSciNet] [Google Scholar]
- E. Beretta, Y. Kuang. Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal., 33(5) (2002), 1144–1165. [CrossRef] [MathSciNet] [Google Scholar]
- G. A. Bocharov, K. P. Hadeler. Structured population models, conservation laws, and delay equations. J. Diff. Equa., 168(1) (2000), 212–237. [CrossRef] [Google Scholar]
- A. Castellazzo, A. Mauro, C. Volpe, E. Venturino. Do demographic and disease structures affect the recurrence of epidemics? Math. Model. Nat. Phenom., 7(3) (2012), 28–39. [CrossRef] [EDP Sciences] [Google Scholar]
- D. T. Crouse, L. B. Crowder, and H. Caswell. A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology, 68(5) (1987), 1412–1423. [CrossRef] [Google Scholar]
- J. M. Cushing, M. Saleem. A predator prey model with age structure. J. Math. Biol., 14(2) (1982), 231–250. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- A. D’Onofrio. Tumor-immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy. Math. Mod. Meth. Appl. Sci. 16(8) (2006), 1375–1401. [CrossRef] [Google Scholar]
- L. Edelstein-Keshet. Mathematical models in biology. SIAM, New York, 1988. [Google Scholar]
- L. C. Evans. Partial differential equations. AMS, Providence, 1998. [Google Scholar]
- M. V. S. Frasson. On the dominance of roots of characteristic equations for neutral functional differential equations. Appl. Math. Comput., 214(1) (2009), 66–72. [CrossRef] [Google Scholar]
- K. Gopalsamy, B. G. Zhang. On a neutral delay logistic equation. Dynam. Stabil. Syst., 2 (1988), 183–195. [CrossRef] [Google Scholar]
- S. A. Gourley and Y. Kuang. A stage structured predator-prey model and its dependence on maturation delay and death rate. J. Math. Biol., 49(2) (2004), 188–200. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- M. E. Gurtin, R. C. MacCamy. Non-linear age-dependent population dynamics. Arch. Ration. Mech. An., 54(3) (1974), 281–300. [Google Scholar]
- M. E. Gurtin, R. C. MacCamy. Some simple models for nonlinear age-dependent population dynamics. Math. Biosci., 43(3) (1979), 199–211. [CrossRef] [Google Scholar]
- A. Hastings. Age-dependent predation is not a simple process. I. continuous time models. Theor. Popul. Biol., 23(3) (1983), 347–362. [CrossRef] [Google Scholar]
- A. Hastings. Delays in recruitment at different trophic levels: Effects on stability. J. Math. Biol., 21 (1984), 35–44. [MathSciNet] [PubMed] [Google Scholar]
- M. L. Hbid, E. Sanchez, R. Bravo De La Parra. State-dependent delays associated to threshold phenomena in structured population dynamics. Math. Mod. Meth. Appl. Sci., 17(6) (2007), 877–900. [CrossRef] [Google Scholar]
- A. Kacha, M. H. Hbid, R. Bravo de la Parra. Mathematical study of a bacteria-fish model with level of infection structure. Nonlinear Anal. Real, 10 (2009), 1662–1678. [Google Scholar]
- Y. Kuang. On neutral delay logistic Gause-type predator-prey systems. Dynam. Stabil. Syst., 6(2) (1991), 173–189. [CrossRef] [Google Scholar]
- A. J. Lotka. Elements of physical biology. Williams & Wilkins, Princeton, N. J., 1925. [Google Scholar]
- R. May. Complexity and stability in model ecosystems. Princeton University Press, 1973. [Google Scholar]
- M. Mohr. On predator-prey models with delay due to maturation. Master’s thesis, Technische Universität München, Munich, 2012. [Google Scholar]
- R. M. Nisbet, W. S. C. Gurney. The systematic formulation of population models for insects with dynamically varying instar duration. Theor. Popul. Biol., 23(1) (1983) 114–135. [CrossRef] [Google Scholar]
- V. N. Novoseltsev, J. A. Novoseltseva, A. I. Yashin. What does a fly’s individual fecundity pattern look like? The dynamics of resource allocation in reproduction and ageing. Mech. Ageing Dev., 124 (5) (2003) 605–617. [CrossRef] [PubMed] [Google Scholar]
- L. Nunney. The effect of long time delays in predator-prey systems. Theor. Popul. Biol., 27 (1985), 202–221. [CrossRef] [PubMed] [Google Scholar]
- M. L. Rosenzweig, R. H. MacArthur. Graphical representation and stability conditions of predator-prey interactions. Am. Nat., 97 (895) (1963) 209–223. [CrossRef] [Google Scholar]
- G. G. Ross. A difference-differential model in population dynamics. J. Theor. Biol., 37(3) (1972), 477–492. [CrossRef] [PubMed] [Google Scholar]
- F. R. Sharpe, A. J. Lotka. A problem in age distribution. Philos. Mag. Ser. 6, 21 (1911), 435–438. [Google Scholar]
- H. Smith. An introduction to delay differential equations with applications to the life sciences. Springer, New York, 2011. [Google Scholar]
- M. E. Solomon. The natural control of animal populations. J. Anim. Ecol., 18 (1949), 1–35. [CrossRef] [Google Scholar]
- E. Venturino. Epidemics in predator–prey models: disease in the predators. Math. Med. Biol., 19(3) (2002), 185–205. [Google Scholar]
- V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie conviventi. Mem. Accad. Lincei Roma, 2 (1926), 31–113. [Google Scholar]
- W. Wang, L. Chen. A predator-prey system with stage-structure for predator. Comput. Math. Appl. 33(8) (1997), 83–91. [CrossRef] [Google Scholar]
- K. S. Williams, C. Simon. The ecology, behavior, and evolution of periodical cicadas. Annu. Rev. Entomol., 40(1) (1995), 269–295. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.