Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 9, Number 1, 2014
Issue dedicated to Michael Mackey
|
|
---|---|---|
Page(s) | 108 - 132 | |
DOI | https://doi.org/10.1051/mmnp/20149108 | |
Published online | 07 February 2014 |
- A. K. Abass, A. H. Lichtman, S. Pillai. Cellular and molecular immunolgy. 7th edition, Elsevier (2012). [Google Scholar]
- L.H. Abbott, F. Michor. Mathematical models of targeted cancer therapy. British Journal of Cancer 95 (2006), 1136–1141. [CrossRef] [PubMed] [Google Scholar]
- M. Adimy, F. Crauste. Delay differential equations and autonomous oscillations in Hematopoietic stem cell dynamics modeling. Math. Model. Nat. Phenom., (2012), 7(6), 1–22. [Google Scholar]
- M. Adimy, F. Crauste, A. Halanay, M. Neamţu, D. Opriş. Stability of limit cycles in a pluripotent stem cell dynamics model. Chaos, Solitons&Fractals (2006), 27(4), 1091–1107. [Google Scholar]
- M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with application to chronic myelogenous leukemia. SIAM J. Appl. Math. (2005), 65(4), 1328–1352. [CrossRef] [MathSciNet] [Google Scholar]
- J. Beckman, S. Scheitza, P. Wernet, J. Fischer, B. Giebel. Asymmetric cell division within the human hematopoietic stem and progenitor cell compartment: identification of asymetrically segregating proteins. Blood (2007), No. 12, 109, 5494–5501. [Google Scholar]
- R. Bellman, K. L. Cooke. Differential-Difference equations. Academic Press New York, (1963). [Google Scholar]
- E. Beretta, Y. Kuang. Geometric stability switch criteria in delay differential dystems with delay-dependent darameters. SIAM J. Math. Anal. (2002), 33(5), 1144-1165. [CrossRef] [MathSciNet] [Google Scholar]
- E. Burger. On stability of certain economic systems. Econometrica (1956), 24, 488–493. [CrossRef] [Google Scholar]
- C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis I-Periodic chronic myelogenous leukemia. J. Theor. Biology (2005), 237, 117–132. [Google Scholar]
- K. Cooke, Z. Grossman. Discrete Delay, Distribution delay and stability switches. J. Math. Anal. Appl. (1982), 86, 592–627. [CrossRef] [MathSciNet] [Google Scholar]
- K. Cooke, P. van den Driessche. On zeros of some transcendental equations. Funkcialaj Ekvacioj (1986), 29, 77–90. [MathSciNet] [Google Scholar]
- L.E. El’sgol’ts, S.B. Norkin. Introduction to the theory of differential equations with deviating arguments. (in Russian). Nauka, Moscow, 1971. [Google Scholar]
- A. Fridman. Cancer as multifaceted disease. Math. Model. Nat. Phenom (2012), 7, No.1, 3–28. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Halanay. Periodic solutions in mathematical models for the treatment of chronic myelogenous leukemia. Math. Model. Nat. Phenom (2012), 7, No.1, 235–244. [Google Scholar]
- J. Hale. Theory of functional differential equations. Springer, New York, 1977. [Google Scholar]
- P. Kim, P. Lee, D. Levy. Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput.Biol. (2008), 4(6):e1000095. [Google Scholar]
- P. Kim, P.Lee, D. Levy.A theory of immunodominance and adaptive regulation,Bull. Math. Biol. (2010), DOI 10.1007/s11538-010-9585-5. [Google Scholar]
- M.C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu. Periodic oscillations of blood cell population in chronic myelogenous leukemia. SIAM J. Math. Anal. (2006), 38, 166–187. [CrossRef] [MathSciNet] [Google Scholar]
- A. Marciniak-Czochra, T. Stiehl, W. Wagner. Modeling of replicative senescence in hematopoietic development. Aging (2009), 1(8), 723–732. [Google Scholar]
- F. Michor, T. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C. Sawyers, M. Novak. Dynamics of chronic myeloid leukemia. Nature (2005), 435, 1267–1270. [CrossRef] [PubMed] [Google Scholar]
- H. Moore, N.K. Li. A mathematical model for chronic myelogenous leukemia (CML) and T-cell interaction. J. Theor. Biol. (2004), 227, 513–523. [CrossRef] [PubMed] [Google Scholar]
- S. I. Niculescu, P. S. Kim, K. Gu, P. Lee, D. Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems (2010), Series B Volume 13, No. 1, pp. 129–156. [Google Scholar]
- H. Ozbay, C. Bonnet, H. Benjelloun, J. Clairambault. Stability analysis of cell dynamcis in leukemia. Math. Model. Nat. Phenom. (2012), Volume 7, No. 1, 203–234. [Google Scholar]
- R. Radulescu, D. Candea, A. Halanay. Stability and bifurcation in a model for the dynamics of stem-like cells in leukemia under treatment. American Institute of Physics Proceedings (2012), 1493, 758–763. [Google Scholar]
- T. Reya. Regulation of hematopoietic stem cell self-Renewal. Recent Progress in Hormone Research (2003), 58, 283–295. [CrossRef] [PubMed] [Google Scholar]
- T. Stiehl, A. Marciniak-Czochra. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math. Model. Nat. Phenom. (2012), Vol. 7, No. 1, 166–202. [Google Scholar]
- C. Tomasetti, D. Levi. Role of symmetric and asymmetric division of stem cells in developing drug resistance. PNAS (2010), Vol. 17 , No. 39, 16766–16771. [CrossRef] [Google Scholar]
- J. Zajac, L. E. Harrington. Immune response to viruses: antibody-mediated immunity. University of Alabama at Birmingham, Birmingham, AL, USA, Elsevier Ltd, 2008. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.