Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 1, 2014
Issue dedicated to Michael Mackey
Page(s) 133 - 138
Published online 07 February 2014
  1. A. Adell, P. Celada, M. T. Abella, F. Artigasa. Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain. Res. Rev. 39 (2002), 154–180. [CrossRef] [PubMed] [Google Scholar]
  2. P. Blandina, J. Goldfarb, B. Craddock-Royal, J. P. Green. Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum. J. Pharmacol. Exper. Therap., 251(1989), 803–809. [Google Scholar]
  3. N. Bonhomme, P. Duerwaerdere, M. Moal, U. Spampinato. Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat. Neuropharmacology, 34 (1995), 269–279. [CrossRef] [PubMed] [Google Scholar]
  4. D. J. Brooks. Dopamine agonists: their role in the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 68 (2000), 685–689. [CrossRef] [PubMed] [Google Scholar]
  5. H. J. Chiel, R. D. Beer. The brain has a body: adaptive behavior emerges from interactions of nervous system, body, and environment. Trends Neuroscience, 20 (1997), 553–557. [Google Scholar]
  6. R. A. Cunha. Different cellular sources and different roles of adenosine: A1 receptor- mediated inhibition through astrocytic-driven volume transmission and synapse–restricted A2A receptor-mediated facilitation of plasticity. Neurochem. Int., 52 (2008), 65–72. [CrossRef] [PubMed] [Google Scholar]
  7. P. Deurwaerdere, N. Bonhomme, G. Lucas, M. Moal, U. Spampinato. Serotonin enhances striatal overflow in vivo through dopamine uptake sites. J. Neurochem., 66 (1996), 210–215. [CrossRef] [PubMed] [Google Scholar]
  8. V. DiMatteo, G. DiGiovanni, M. Pierucci, E. Esposito. Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies. Prog. Brain Res., 172 (2008), 7–44. [CrossRef] [PubMed] [Google Scholar]
  9. R. Feldman, J. Meyer, L. Quenzer. Principles of Neuropharmacology. Sunderland, MA.: Sinauer Associates, Inc., Sunderland MA, 1997. [Google Scholar]
  10. K. Fuxe, A. B. Dahlstrom, G. Jonsson, D. Marcellino, M. Guescini, M. Dam, P. Manger, L. Agnati. The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog. Neurobiol., 90(2010), 82–100. [CrossRef] [PubMed] [Google Scholar]
  11. C. R. Gerfen, D. J. Surmeier. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci., 34(2011), 441–466. [CrossRef] [PubMed] [Google Scholar]
  12. B. P. Guiard, M. E. Mansari, Z. Merali, P. Blier. Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int. J. Neuropsycopharm., 11(2008), 625–639. [Google Scholar]
  13. J. P. Hornung. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat., 26(2003), 331–343. [CrossRef] [PubMed] [Google Scholar]
  14. A. Lasota, M. Mackey. Probabilistic Properties of Deterministic Systems. Springer-Verlag, New York, 1985. [Google Scholar]
  15. J. Losson, M. Mackey. A Hopf-like equation and perturbation theory for delay differential equations. J. Stat. Phys., 69(1992), 1025–1046. [CrossRef] [Google Scholar]
  16. M. C. Mackey. A unified hypothesis for the origin of aplastic anemia and haematopoiesis. Blood, 51(1978), 941–956. [PubMed] [Google Scholar]
  17. M. C. Mackey, L. Glass. Oscillations and chaos in physiological control systems. Science, 197(1977), 287–289. [CrossRef] [PubMed] [Google Scholar]
  18. M. C. Mackey, L. Glass. Pathological conditions resulting from instabilities in physiological control systems. Ann. N. Y . Acad. Sci., 316(1979), 214–235. [CrossRef] [Google Scholar]
  19. M. C. Mackey, M. Tyran-Kaminska. Deterministic Brownian motion: The effects of perturbing a dynamical system by a chaotic semi-dynamical system. Physics Reports, 422(2006), 167–222. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. M. Monti. The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness. Sleep Med. Rev., 14(2010), 307–317. [CrossRef] [PubMed] [Google Scholar]
  21. M. Reed, H. F. Nijhout, J. Best. Computational Studies of the Role of Serotonin in the Basal Ganglia. Frontiers Integrative Neuroscience, 7(2013), 1–8. [CrossRef] [Google Scholar]
  22. Y. Smith, M. Bevan, E. Shink, J. P. Bolam. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience, 86(1998), 353–387. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.