Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 2, 2014
Epidemics models on networks
Page(s) 108 - 120
Published online 24 April 2014
  1. R.M. Anderson, R.M. May. Directly transmitted infectious-diseases: control by vaccination. Science, 215 (1982), 1053–1060. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. A. Barabási, R. Albert. Emergence of scaling in random networks. Science, 86 (1999), 509–512. [Google Scholar]
  3. A. Berman, R.J. Plemmons. Nonnegative matrices in the Mathematical Sciences. Classics in Applied Mathematics, 9 SIAM (1994). [Google Scholar]
  4. M. Boguñá, R. Pastor-Satorras. Epidemic spreading in correlated complex networks. Physical Review E, 66 (4) (2002), 047104. [Google Scholar]
  5. V. Colizza, A. Vespignani. Invasion threshold in Heterogeneous metapopulation models. Physical Review Letters, 99 (2007), 148701. [CrossRef] [PubMed] [Google Scholar]
  6. V. Colizza, R. Pastor-Satorras, A. Vespignani. Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nature Physics, 3 (2007), 276–282. [Google Scholar]
  7. V. Colizza, A. Vespignani. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern. J. Theor. Biol, 251 (2008), 450–467. [CrossRef] [PubMed] [Google Scholar]
  8. P. C. Cross, P. L. F. Johnson, J. O. Lloyd-Smith, W. M. Getz. Utility of R0 as a predictor of disease invasion in structured populations. J. R. Soc. Interface, 4 (2007), 4:315–24. [CrossRef] [PubMed] [Google Scholar]
  9. K. Dietz. Overall population patterns in the transmission cycle of infectious disease agents, in Population Biology of Infectious Diseases (ed. R.M. Anderson, R.M. May), Dahlem Workshop Reports Vol. 25, 87-102. Springer (1982). [Google Scholar]
  10. K. T. D. Eames, M. J. Keeling. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. PNAS, 99 (2002), 13330–13335. [Google Scholar]
  11. H. Fukś, A.T. Lawniczak, R. Duchesne. Effects of population mixing on the spread of SIR epidemics. The European Physical Journal B, 50 issue 1 (2006), 209–214. [CrossRef] [Google Scholar]
  12. J.L. Garcia-Domingo, D. Juher, J. Saldaña. Degree correlations in growing networks with deletion of nodes. Physica D, 237 (2008), 640–651. [CrossRef] [MathSciNet] [Google Scholar]
  13. R.A. Horn, C.R. Johnson. Matrix Analysis, Cambridge Univ. Press (1990). [Google Scholar]
  14. L. Hufnagel, D. Brockmann, T. Geisel. Forecast and control of epidemics in a globalized world. PNAS, 101 (2004), 15124. [Google Scholar]
  15. D. Juher, J. Ripoll, J. Saldaña. Analysis and Monte Carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulations. Physical Review E, 80 (2009), 041920. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. J. Keeling. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. B, 266 (1999), 859–869. [CrossRef] [Google Scholar]
  17. H. McCallum, N. Barlow, J. Hone. How should pathogen transmission be modelled?. Trends in Ecology & Evolution, 16 (2001), 295–300. [CrossRef] [PubMed] [Google Scholar]
  18. R. M. May, A. L. Lloyd. Infection dynamics on scale-free networks. Physical Review E, 64 (2001), 066112. [Google Scholar]
  19. M. E. J. Newman. Spread of epidemic disease on networks, Physical Review E. 66 (2002), 016128. [Google Scholar]
  20. M. E. J. Newman. Assortative mixing in networks, Phys. Rev. Lett. 89 (2002), 208701. [CrossRef] [PubMed] [Google Scholar]
  21. Y.A. Rho, L. S. Liebovitch, I. B. Schwartz. Dynamical response of multi-patch, flux-based models to the input of infected people: Epidemic response to initiated events. Physics Letters A, 372 (2008), 5017. [CrossRef] [Google Scholar]
  22. J. Saldaña. Continuous-time formulation of reaction-diffusion processes on heterogeneous metapopulations. Physical Review E, 78 (2008), 012902. [CrossRef] [Google Scholar]
  23. J. Saldaña. Modelling the spread of infectious diseases in complex metapopulations. Mathematical Modelling of Natural Phenomema, 5 (2010), No. 6, 22–37. [Google Scholar]
  24. H. R. Thieme. Mathematics in population biology. Princeton Univ. Press (2003). [Google Scholar]
  25. R. Xulvi-Brunet, I.M. Sokolov. Changing correlations in networks: assortativity and dissortativity. Acta Physica Polonica B. 36 (2005), 1431–1455. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.