Free Access

This article has an erratum: []

Math. Model. Nat. Phenom.
Volume 9, Number 2, 2014
Epidemics models on networks
Page(s) 121 - 135
Published online 24 April 2014
  1. R.M. Anderson. The epidemiology of HIV infection: Variable incubation plus infectious periods and heterogeneity in sexual activity. J. Roy. Stat. Soc. A. Sta. 151 (1988), 66–93. [CrossRef] [Google Scholar]
  2. R.M. Anderson, R.M. May, B. Anderson. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, USA, 1992. [Google Scholar]
  3. K.B. Athreya, P.E. Ney. Branching processes, volume 28. Springer-Verlag Berlin, 1972. [Google Scholar]
  4. F. Ball. The threshold behaviour of epidemic models. J. Appl. Probab., 20 (1983), 227–241. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Bezemer, F. de Wolf, M.C. Boerlijst, A. van Sighem, T.D. Hollingsworth, C. Fraser. 27 years of the HIV epidemic amongst men having sex with men in the Netherlands: An in depth mathematical model-based analysis. Epidemics, 2 (2010), 66–79. [CrossRef] [PubMed] [Google Scholar]
  6. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28 (1990), 365–382. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. P.N. Halkitis, S. Brockwell, D.E. Siconolfi, R.W. Moeller, R.D. Sussman, P.J. Mourgues, B. Cutler, M.M. Sweeney. Sexual behaviors of adolescent, emerging and young adult men who have sex with men ages 13–29 in New York City. JAIDS, 56 (2011), 285–291. [Google Scholar]
  8. T.E. Harris. The theory of branching processes. Courier Dover Publications, 2002. [Google Scholar]
  9. J.A.P. Heesterbeek, K. Dietz. The concept of R0 in epidemic theory. Stat. Neerl., 50 (1996), 89–110. [CrossRef] [Google Scholar]
  10. H.W. Hethcote, J.A. Yorke, A. Nold. Gonorrhea modeling: a comparison of control methods. Math. Biosci., 58 (1982), 93–109. [CrossRef] [Google Scholar]
  11. T.D. Hollingsworth, R.M. Anderson, C. Fraser. HIV-1 transmission, by stage of infection. J. Infect. Dis., 198 (2008), 687–693. [CrossRef] [PubMed] [Google Scholar]
  12. D.G. Kendall. Branching processes since 1873. J. London Math. Soc., 1 (1966), 385–406. [CrossRef] [Google Scholar]
  13. M. Kretzschmar, Y.T. van Duynhoven, A.J. Severijnen. Modeling prevention strategies for gonorrhea and chlamydia using stochastic network simulations. Am. J. Epidemiol., 144 (1996), 306–317. [CrossRef] [PubMed] [Google Scholar]
  14. F. Liljeros, C.R. Edling, L.A. Amaral, H.E. Stanley, Y. Aberg. The web of human sexual contacts. Nature, 411 (2001): 907–908. [Google Scholar]
  15. I.M. Longini, W.S. Clark, R.H. Byers, J.W. Ward, W.W. Darrow, G.F. Lemp, H.W. Hethcote. Statistical analysis of the stages of HIV infection using a Markov model. Stat. Med., 8 (1989), 831–843. [CrossRef] [PubMed] [Google Scholar]
  16. R.M. May, A.L. Lloyd. Infection dynamics on scale-free networks. Phys. Rev. E, 64 (2001), 066112. [CrossRef] [Google Scholar]
  17. L. Meyers. Contact network epidemiology: Bond percolation applied to infectious disease prediction and control. B. Am. Math. Soc., 44 (2007), 63–86. [CrossRef] [Google Scholar]
  18. J.C. Miller, B. Davoudi, R. Meza, A.C. Slim, B. Pourbohloul. Epidemics with general generation interval distributions. J. Theor. Biol., 262 (2010), 107–115. [CrossRef] [PubMed] [Google Scholar]
  19. J.C. Miller, A.C. Slim, E.M. Volz. Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface, 9 (2012), 890–906. [CrossRef] [PubMed] [Google Scholar]
  20. M.E.J. Newman. Spread of epidemic disease on networks. Phys. Rev. E, 66 (2002), 016128. [Google Scholar]
  21. R. Pastor-Satorras, A. Vespignani. Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86 (2001), 3200–3203. [CrossRef] [PubMed] [Google Scholar]
  22. C.D. Pilcher, G. Joaki, I.F. Hoffman, F.E.A. Martinson, C. Mapanje, P.W. Stewart, K.A. Powers, S. Galvin, D. Chilongozi, S. Gama, M.A. Price, S.A. Fiscus, M.S. Cohen. Amplified transmission of HIV-1: comparison of HIV-1 concentrations in semen and blood during acute and chronic infection. AIDS, 21 (2007), 1723–1730. [CrossRef] [PubMed] [Google Scholar]
  23. S.D. Pinkerton. Probability of HIV transmission during acute infection in Rakai, Uganda. AIDS Behav., 12 (2007), 677–684. [Google Scholar]
  24. E.O. Romero-Severson, S.J. Alam, E.M. Volz, J.S. Koopman. Heterogeneity in number and type of sexual contacts in a gay urban cohort. Stat. Comm. Infect. Dis., 4 (2012). [Google Scholar]
  25. E. Vitinghoff, J. Douglas, F. Judon, D. McKiman, K. MacQueen, S.P. Buchinder. Per-contact risk of human immunodificiency virus tramnsmision between male sexual partners. Am. J. Epidemiol., 150 (1999), 306-311. [CrossRef] [PubMed] [Google Scholar]
  26. E. Volz. SIR dynamics in random networks with heterogeneous connectivity. J. Math. Biol., 56 (2008), 293–310. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  27. M.J. Wawer, R.H. Gray, N.K. Sewankambo, D. Serwadda, X. Li, O. Laeyendecker, N. Kiwanuka, G. Kigozi, M. Kiddugavu, T. Lutalo. Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J. Infect. Dis., 191 (2005), 1403–1409. [CrossRef] [PubMed] [Google Scholar]
  28. X. Zhang, L. Zhong, E. Romero-Severson, S.J. Alam, C.J. Henry, E.M. Volz, J.S. Koopman. Episodic HIV risk behavior can greatly amplify HIV prevalence and the fraction of transmissions from acute HIV infection. Stat. Comm. Infect. Dis., 4 (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.