Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 2, 2014
Epidemics models on networks
Page(s) 136 - 152
DOI https://doi.org/10.1051/mmnp/20149209
Published online 24 April 2014
  1. S. Cousens, B. Kanki, S. Toure, I. Diallo, V. Curtis. Reactivity and repeatability of hygiene behaviour: structured observations from burkina faso. Soc. Sci. Med., 43 (1996), No. 9, 1299–1308. [CrossRef] [PubMed] [Google Scholar]
  2. S. Del Valle, H. Hethcote, J. Hyman, C. Castillo-Chavez. Effects of behavioral changes in a smallpox attack model. Math. Biosci., 195 (2005), No. 2, 228–251. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. E. P. Fenichel, C. Castillo-Chavez, M. Ceddia, G. Chowell, P. A. G. Parra, G. J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings, et al. Adaptive human behavior in epidemiological models. PNAS, 108 (2011), No. 15, 6306–6311. [Google Scholar]
  4. N. Ferguson. Capturing human behaviour. Nature, 446 (2007), No. 7137, 733. [CrossRef] [PubMed] [Google Scholar]
  5. S. Funk, M. Salath, V. A. A. Jansen. Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface, 7 (2010), 1247–1256. [CrossRef] [PubMed] [Google Scholar]
  6. S. Funk, E. Gilad, C. Watkins, V. Jansen. The spread of awareness and its impact on epidemic outbreaks. PNAS, 106 (2009), No. 16, 6872–6877. [Google Scholar]
  7. W. R. Gilks, S. Richardson, D. J. Spiegelhalter. Markov chain Monte Carlo in practice. Vol. 2, CRC press, 1996. [Google Scholar]
  8. O. Givan, N. Schwartz, A. Cygelberg, L. Stone. Predicting epidemic thresholds on complex networks: Limitations of mean-field approaches. J. Theor. Biol., 288 (2011), 21–28. [CrossRef] [PubMed] [Google Scholar]
  9. M. J. Keeling, P. Rohani. Modeling infectious diseases in humans and animals. Princeton Univ. Press, 2008. [Google Scholar]
  10. B. Kosko. Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence. Prentice-Hall, Inc., 1991. [Google Scholar]
  11. B. Lemmens, R. Nussbaum. Nonlinear Perron-Frobenius Theory. Vol. 189, Cambridge University Press, 2012. [Google Scholar]
  12. L. Machado, N. Wyatt, A. Devine, B. Knight. Action planning in the presence of distracting stimuli: An investigation into the time course of distractor effects. J. Exp. Psychol. Hum. Percept. Perform., 33 (2007), No. 5, 1045. [CrossRef] [PubMed] [Google Scholar]
  13. S. Miller, L. Yardley, P. Little. Development of an intervention to reduce transmission of respiratory infections and pandemic flu: Measuring and predicting hand-washing intentions. Psych. Health Med., 17 (2012), No. 1, 59–81. [CrossRef] [Google Scholar]
  14. N. Perra, D. Balcan, B. Gonasalves, A. Vespignani. Towards a characterization of behavior-disease models. PLoS ONE, 6 (2011), No. 8, e23084. [Google Scholar]
  15. P. Poletti. Human behavior in epidemic modelling, Ph.D. thesis, University of Trento, 2010. [Google Scholar]
  16. T. Reluga. Game theory of social distancing in response to an epidemic. PLoS Comput. Biol., 6 (2010), No. 5, e1000793. [CrossRef] [PubMed] [Google Scholar]
  17. F. D. Sahneh, C. Scoglio. Epidemic spread in human networks. in: IEEE Decis. Contr. P., (2011), 3008–3013. [Google Scholar]
  18. F. D. Sahneh, F. N. Chowdhury, C. M. Scoglio. On the existence of a threshold for preventive behavioral responses to suppress epidemic spreading. Sci. Rep., 2 (2012), 632. [CrossRef] [PubMed] [Google Scholar]
  19. F. D. Sahneh, C. Scoglio. Optimal information dissemination in epidemic networks. in: IEEE Decis. Contr. P., (2012), 1657–1662. [Google Scholar]
  20. F. D. Sahneh, C. Scoglio, P. Van Mieghem. Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Trans. Networking, 21 (2013), No. 5, 1609–1620. [CrossRef] [Google Scholar]
  21. R. Sapolsky. Why Zebras Dont` Get Ulcers. An Updated Guide to Stress, Stress-Related Diseases and Coping. New York: WH Freeman and Company, 1998. [Google Scholar]
  22. C. Scoglio, W. Schumm, P. Schumm, T. Easton, S. R. Chowdhury, A. Sydney, M. Youssef. Efficient mitigation strategies for epidemics in rural regions. PLoS ONE, 5 (2010), No. 7, e11569. [CrossRef] [PubMed] [Google Scholar]
  23. M. Taylor, P. L. Simon, D. M. Green, T. House, I. Z. Kiss. From markovian to pairwise epidemic models and the performance of moment closure approximations. J. Math. Biol., 64 (2012), No. 6, 1021–1042. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  24. S. M. Tracht, S. Y. Del Valle, J. M. Hyman. Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1). PLoS ONE, 5 (2010), No. 2, e9018. [CrossRef] [PubMed] [Google Scholar]
  25. M. Youssef, C. Scoglio. Mitigation of epidemics in contact networks through optimal contact adaptation. Math. Biosci. Eng., 10 (2013), No. 4, 1227–1251. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.